2.2 用样本估计总体学习过程知识点 1:频率分布的概念频率分布是指一个样本数据在各个小范围内所占比例的大小。一般用频率分布直方图反映样本的频率分布。其一般步骤为:(1)计算一组数据中最大值与最小值的差,即求极差(2)决定组距与组数(3)将数据分组(4)列频率分布表(5)画频率分布直方图知识点 2:频率分布折线图、总体密度曲线〖探究〗:同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也 会不同。不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0.1 和 1 为组距重新作图,然后谈谈你对图的印象?(把学生分成两大组进行,分别作出两种组距的图,然后组织同学们对所作图不同的看法进行交流……)接下来请同学们思考下面这个问题:〖思考〗:如果当地政府希望使 85%以上的居民每月的用水量不超出标准,根据频率分布表 2-2 和频率分布直方图 2.2-1,(见课本 P57)你能对制定月用水量标准提出建议吗?(让学生仔细观察表和图)知识点 3:茎叶图1.茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图。(见课本 P6 1例子)2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图 中的数据可以随时记录,随时添加,方便记录与表示。(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰。知识点 4:众数、中位数、平均数〖探究〗:P62(1)怎样将各个样本数据汇总为一个数值,并使它成为样本数据的“中心点”?(2)能否用一个数值来描写样本数据的离散程度?(让学生回忆初中所学的一些统计知识,思考后 展开讨论)初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些 数字都能够为我们提供关于样本数据的特征信息。例如前面一节在调查 100 位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水 量的众数是2.25t(最高的矩形的中点)(图略见课本第 62 页)它告诉我们,该市的月均用水量为 2. 25t 的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多...