电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

基于matlab的小波分析在图像处理中的应用--大学毕业论文设计

基于matlab的小波分析在图像处理中的应用--大学毕业论文设计_第1页
1/28
基于matlab的小波分析在图像处理中的应用--大学毕业论文设计_第2页
2/28
基于matlab的小波分析在图像处理中的应用--大学毕业论文设计_第3页
3/28
基于 Matlab 的小波分析在图像处理中的应用摘要:本文先介绍了小波分析得基本理论,包括连续小波变换、离散小波变换和小波包分析。小波变换具有时频局部化的特点,因此不但能对图像提供较精确的时域定位,也能提供较精确的频域定位。经过小波变换的图像具有频谱划、方向选择、多分辨率分析和天然塔式数据结构特点。基于小波变换这些特性,讨论了 MATLAB 语言环境下图像压缩,图像去噪,图像融合,图像分解,图像增强的基本方法。关键词:小波分析;图像压缩;图像去噪;图像融合;图像分解;图像增强1 引言小波分析诞生于 20 世纪 80 年代, 被认为是调和分析即现代 Fourier 分析进展的一个崭新阶段。众多高新技术以数学为基础,而小波分析被誉为“数学显微镜”,这就决定了它在高科技讨论领域重要的地位。目前, 它在模式识别、图像处理、语音处理、故障诊断、地球物理勘探、分形理论、空气动力学与流体力学上的应用都得到了广泛深化的讨论,甚至在金融、证券、股票等社会科学方面都有小波分析的应用讨论。在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor 变换,时频分析,小波变换等。其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。换言之,短时傅立叶分析只能在一个分辨率上进行。所以对很多应用来说不够精确,存在很大的缺陷。而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采纳较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。 本文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,它们的主要性质包括紧支集长度、滤波器长度、对称性、消逝矩等,都做了简要的说明。然后讨论了小波分析在图像处理...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

基于matlab的小波分析在图像处理中的应用--大学毕业论文设计

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部