正态分布得概率密度函数得推导An inte r e s ting que st io n w as posed in a Stati st ics as s i g nmen t w h ich was to s h o w t h a t the standard no r m a l di s tr i butio n wa s va li d - ie t he i nte gr al fr o m negat i ve infin ity to i nfi nity e q uat ed to o ne and in do ing so sh o wed the derivati o n o f th e part of the n o rma l pd f 、A frien d of m ine and I deci de d to try to d eriv e the n o r mal pd f and the t hin k ing w e nt along the lines o f t h e centra l l i m i t the o rem whic h s tate s that t he m e an o f a n y p ro b ability dis t ributio n b ees nor ma l a s the nu mber of t ria ls incr e ases、The derivatio n of this is well known、 but we ask e d ou rs el ves ho w the no rm al distribution was fi rs t a c hi e ved、 Ther e i s another 'norma l' deriva t i on whi c h i s the b i nomial app roxim ati o n and it i s thr o ugh thi s d ir ect io n th a t w e wo n d e r e d h o w to de riv e the no rm a l distri b ut io n f r o m the bi n o m ial a s n get s large、So t he general a p proach w e wil l ta ke i s to take a b i n om ial dis t r ibution, t h en incr e as e the nu m b e r of samples n、(提出一个有趣得问题就就是在统计分配,这就就是表明,标准正态分布就就是有效得 - 即从负无穷到正无穷得积分等同于一个,并在这样做表明推导了部分正常得 PDF 。我,我得一个朋友决定尝试推导出正常得 PDF 与沿中心极限定理指出,任何概率分布得均值作为试验增加得正常思维。这个推导就就是众所周知得。 但我们问自己如何正态分...