电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

余弦定理教案设计

余弦定理教案设计_第1页
1/7
余弦定理教案设计_第2页
2/7
余弦定理教案设计_第3页
3/7
余 弦 定 理一、教材分析本节主要讨论 xxxxxx,分两课时,这里是第一课时。它是在学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解三角形 的基础上进行学习的.通过利用平面几何法、坐标法(两点的距离公式)、向量的模,正弦定理等方法推导余弦定理,学生会正确理解余弦定理的结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角"问题,体会方程思想,理解余弦定理是勾股定理的特例, 从多视角思考问题和发现问题,形成良好的思维品质,激发学生探究数学,应用数学的潜能,培育学生思维的宽阔性。 二、学情分析本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣.总体上学生应用数学知识的意识不强,制造力较弱,看待与分析问题不深化,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。 本节内容是人教 B 版普通高中课程标准实验教科书必修 5 第一章第一节余弦定理的第一课时。余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际应用问题(如测量等)的重要定理,它将三角形的边和角有机的结合起来,实现了"边"和”角"的互化,从而使”三角”与"几何”有机的结合起来,为求与三角形有关的问题提供了理论依据,同时也为推断三角形的形状和证明三角形中的等式提供了重要的依据。教科书首先通过设问的方式,指出了”已知三角形的两边和夹角,无法用正弦定理去解三角形",进而通过直角三角形中的勾股定理引导学生去探究一般三角形中的边角关系,然后通过构造直角三角形去完成对余弦定理的推证过程,教科书上还进一步的启发学生用向量的方法去证明 余 弦 定 理 , 最 后 通 过 3 个 例 题 巩 固 学 生 对 余 弦 定 理 的 应 用 。 在学习本节课之前,学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解哪些类型的三角形。在此基础上,老师可以创设一个”已知三角形两边及夹角"来解三角形的实际例子,学生发现不能用上一节所学的知识来...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

余弦定理教案设计

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部