电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学大一轮复习 11.3 二项分布与正态分布精练-人教版高三数学试题VIP免费

高考数学大一轮复习 11.3 二项分布与正态分布精练-人教版高三数学试题_第1页
1/13
高考数学大一轮复习 11.3 二项分布与正态分布精练-人教版高三数学试题_第2页
2/13
高考数学大一轮复习 11.3 二项分布与正态分布精练-人教版高三数学试题_第3页
3/13
11.3二项分布与正态分布挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.条件概率、相互独立事件及二项分布了解条件概率和两个相互独立事件的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题2012天津,16两个相互独立事件的概率的求法互斥事件的概率公式、期望★★★2.正态分布及其应用利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义2017课标Ⅰ,19正态分布的应用数学期望★☆☆分析解读1.了解条件概率和两个事件相互独立的概念,掌握求条件概率的步骤,会求条件概率.2.掌握独立事件概率的求法,能用二项分布解决实际问题.3.了解正态分布与正态曲线的概念,掌握正态曲线的性质.4.独立事件的概率为近几年高考的热点.本节在高考中难度为易或中等.破考点【考点集训】考点一条件概率、相互独立事件及二项分布1.随机变量ξ~B(n,p),且Eξ=300,Dξ=200,则np等于()A.3200B.2700C.1350D.1200答案B2.(2014课标Ⅱ,5,5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45答案A3.某篮球队甲、乙两名球员在一个赛季中前10场比赛中投篮命中情况统计如下表注:表中分数nN,N表示投篮次数,n表示命中次数,假设各场比赛相互独立.场次球员12345678910甲513412143059141910161223486131019乙1326918914816615101472191610221220根据统计表的信息:(1)从上述比赛中等可能随机选择一场,分别求甲、乙球员在该场比赛中投篮命中率大于50%的概率;(2)试估计甲、乙两名球员在第11场比赛中恰有一人的命中率大于50%的概率;(3)在接下来的3场比赛中,用X表示这3场比赛中乙球员的命中率大于50%的场数,试写出X的分布列,并求X的数学期望.解析(1)根据投篮统计数据知,在10场比赛中,甲球员的投篮命中率大于50%的场次有5场,所以在随机选择的一场比赛中,甲球员的投篮命中率大于50%的概率是12.在10场比赛中,乙球员的投篮命中率大于50%的场次有4场,所以在随机选择的一场比赛中,乙球员的投篮命中率大于50%的概率是25.(2)设在一场比赛中,甲、乙两名球员恰有一人命中率大于50%为事件A,甲球员的命中率大于50%且乙球员的命中率不大于50%为事件B1,乙球员的命中率大于50%且甲球员的命中率不大于50%为事件B2,则P(A)=P(B1)+P(B2)=12×35+12×25=12.(3)X的可能取值为0,1,2,3.P(X=0)=C30(25)0(35)3=27125;P(X=1)=C31(25)1(35)2=54125;P(X=2)=C32(25)2(35)1=36125;P(X=3)=C33(25)3=8125.X的分布列如下表:X0123P2712554125361258125所以EX=3×25=65.思路分析(1)利用原始数据找到符合要求的场次,从而求出概率;(2)把“恰有一人命中率大于50%”分解为互斥事件的和,求概率;(3)利用(1)中的概率,结合3次独立重复试验和二项分布求分布列和数学期望.考点二正态分布及其应用4.已知随机变量ξ服从正态分布N(0,σ2).若P(ξ>2)=0.023,则P(-2≤ξ≤2)=()A.0.477B.0.628C.0.954D.0.977答案C5.设X~N(μ1,σ12),Y~N(μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是()A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≤t)≥P(Y≤t)D.对任意正数t,P(X≥t)≥P(Y≥t)答案C炼技法【方法集训】方法1独立重复试验及二项分布问题的求解方法1.(2017课标Ⅱ,13,5分)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX=.答案1.962.(2015广东,13,5分)已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p=.答案13方法2正态分布及其应用方法3.某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即X~N(100,a2)(a>0),试卷满分为150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的110,则此次数学考试成绩在100分到110分(包含100分和110分)之间的人数约为()A.400B.500C.600D.800答案A4.高三某班有50名学生,一次数学考试的成绩ξ服从正态分布N(105,102),已知P(95≤ξ≤105)=0.3413,该班学生此次考试数学成绩在115分以上的概率为()A.0.1587B.0.3413C.0.1826D.0.50...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学大一轮复习 11.3 二项分布与正态分布精练-人教版高三数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部