历年考研数学一真题1987-20161987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(5)已知三维向量空间的基底为123(1,1,0),(1,0,1),(0,1,1),ααα则向量(2,0,0)β在此基底下的坐标是_____________.三、(本题满分7分)(2)设矩阵A和B满足关系式2,AB=AB其中301110,014A求矩阵.B五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(4)设A为n阶方阵,且A的行列式||0,aA而*A是A的伴随矩阵,则*||A等于(A)a(B)1a(C)1na(D)na九、(本题满分8分)问,ab为何值时,现线性方程组123423423412340221(3)2321xxxxxxxxaxxbxxxax有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.1988年全国硕士研究生入学统一考试数学(一)试卷二、填空题(本题共4小题,每小题3分,满分12分.把答案填在题中横线上)(4)设4阶矩阵234234[,,,],[,,,],AαγγγBβγγγ其中234,,,,αβγγγ均为4维列向量,且已知行列式4,1,AB则行列式AB=_______.三、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(5)n维向量组12,,,(3)ssnαααL线性无关的充要条件是(A)存在一组不全为零的数12,,,,skkkL使11220sskkkαααL(B)12,,,sαααL中任意两个向量均线性无关(C)12,,,sαααL中存在一个向量不能用其余向量线性表示(D)12,,,sαααL中存在一个向量都不能用其余向量线性表示七、(本题满分6分)已知,APBP其中100100000,210,001211BP求5,.AA八、(本题满分8分)已知矩阵20000101xA与20000001yB相似.(1)求x与.y(2)求一个满足1PAPB的可逆阵.P1989年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(5)设矩阵300100140,010,003001AI则矩阵1(2)AI=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(5)设A是n阶矩阵,且A的行列式0,A则A中(A)必有一列元素全为0(B)必有两列元素对应成比例(C)必有一列向量是其余列向量的线性组合(D)任一列向量是其余列向量的线性组合三、(本题共3小题,每小题5分,满分15分)七、(本题满分6分)问为何值时,线性方程组131231234226423xxxxxxxx有解,并求出解的一般形式.八、(本题满分8分)假设为n阶可逆矩阵A的一个特征值,证明(1)1为1A的特征值.(2)A为A的伴随矩阵*A的特征值.1990年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(5)已知向量组1234(1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),αααα则该向量组的秩是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(5)已知1β、2β是非齐次线性方程组AXb的两个不同的解1,α、2α是对应其次线性方程组AX0的基础解析1,k、2k为任意常数,则方程组AXb的通解(一般解)必是(A)1211212()2kkββααα(B)1211212()2kkββααα(C)1211212()2kkββαββ(D)1211212()2kkββαββ七、(本题满分6分)设四阶矩阵1100213401100213,0011002100010002BC且矩阵A满足关系式1()AECBCE其中E为四阶单位矩阵1,C表示C的逆矩阵,C表示C的转置矩阵.将上述关系式化简并求矩阵.A八、(本题满分8分)求一个正交变换化二次型22212312132344448fxxxxxxxxx成标准型.1991年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(5)设4阶方阵52002100,00120011A则A的逆阵1A=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(5)设n阶方阵A、B、C满足关系式,ABCE其中E是n阶单位阵,则必有(A)ACBE(B)CBAE(C)BACE(D)BCAE七、(本题满分8分)已知1234(1,0,2,3),(1,1,3,5),(1,1,2,1),(1,2,4,8)aaαααα及(1,1,3,5).bβ(1)a、b为...