第26练数列求和问题大全题型一分组转化法求和例1等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818(1)求数列{an}的通项公式;(2)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前n项和Sn.破题切入点(1)可以通过逐个验证来确定数列的前三项,进而求得an;(2)可以分组求和:将{bn}前n项和转化为数列{an}和数列{(-1)nlnan}前n项的和.解(1)当a1=3时,不合题意;当a1=2时,当且仅当a2=6,a3=18时,符合题意;当a1=10时,不合题意.因此a1=2,a2=6,a3=18.所以公比q=3.故an=2·3n-1(n∈N*).(2)因为bn=an+(-1)nlnan=2·3n-1+(-1)nln(2·3n-1)=2·3n-1+(-1)n[ln2+(n-1)ln3]=2·3n-1+(-1)n(ln2-ln3)+(-1)nnln3,所以Sn=2(1+3+…+3n-1)+[-1+1-1+…+(-1)n]·(ln2-ln3)+[-1+2-3+…+(-1)nn]ln3.所以当n为偶数时,Sn=2×+ln3=3n+ln3-1;当n为奇数时,Sn=2×-(ln2-ln3)+ln3=3n-ln3-ln2-1.综上所述,Sn=题型二错位相减法求和例2已知:数列{an}的前n项和为Sn,且满足Sn=2an-n(n∈N*).(1)求a1,a2的值;(2)求数列{an}的通项公式;(3)若数列{bn}的前n项和为Tn,且满足bn=nan(n∈N*),求数列{bn}的前n项和Tn.破题切入点(1)代入求解即可.(2)由Sn=2an-n得Sn-1=2an-1-(n-1),n≥2,两式相减构造数列求通项公式.(3)错位相减求和.解(1)Sn=2an-n.令n=1,解得a1=1;令n=2,解得a2=3.(2)Sn=2an-n,所以Sn-1=2an-1-(n-1)(n≥2,n∈N*),两式相减得an=2an-1+1,所以an+1=2(an-1+1)(n≥2,n∈N*),又因为a1+1=2,所以数列{an+1}是首项为2,公比为2的等比数列.所以an+1=2n,即通项公式an=2n-1(n∈N*).(3)bn=nan,所以bn=n(2n-1)=n·2n-n,所以Tn=(1·21-1)+(2·22-2)+(3·23-3)+…+(n·2n-n),Tn=(1·21+2·22+3·23+…+n·2n)-(1+2+3+…+n).令Sn=1·21+2·22+3·23+…+n·2n,①2Sn=1·22+2·23+3·24+…+n·2n+1,②①-②,得-Sn=21+22+23+…+2n-n·2n+1,-Sn=-n·2n+1,Sn=2(1-2n)+n·2n+1=2+(n-1)·2n+1,所以Tn=2+(n-1)·2n+1-(n∈N*).题型三倒序相加法求和例3已知函数f(x)=(x∈R).(1)证明:f(x)+f(1-x)=;(2)若数列{an}的通项公式为an=f()(m∈N*,n=1,2,…,m),求数列{an}的前m项和Sm;(3)设数列{bn}满足b1=,bn+1=b+bn,Tn=++…+,若(2)中的Sm满足对不小于2的任意正整数m,Sm0,则==-,即=-,所以Tn=(-)+(-)+…+(-)=-=3-.因为bn+1-bn=b>0,所以bn+1>bn,即数列{bn}是单调递增数列.所以Tn关于n递增,所以当n∈N*时,Tn≥T1.因为b1=,b2=()2+=,所以Tn≥T1=3-=.由题意,知Sm<,即-<,解得m<,所以正整数m的最大值为3.题型四裂项相消法求和例4在公差不为0的等差数列{an}中,a1,a4,a8成等比数列.(1)已知数列{an}的前10项和为45,求数列{an}的通项公式;(2)若bn=,且数列{bn}的前n项和为Tn,若Tn=-,求数列{an}的公差.破题切入点(1)列方程组(两个条件)确定an.(2)可以采用裂项相消法求得含有公差的表达式,再和已知Tn=-对比求得公差.解设数列{an}的公差为d,由a1,a4,a8成等比数列可得a=a1·a8,即(a1+3d)2=a1(a1+7d),∴a+6a1d+9d2=a+7a1d,而d≠0,∴a1=9d.(1)由...