第38练“排列、组合”的常考问题题型一排列问题例1即将毕业的6名同学排成一排照相留念,个子较高的明明同学既不能站最左边,也不能站最右边,则不同的站法种数为________.破题切入点最左边和最右边是特殊位置,可采用位置分析法;由于明明同学是特殊元素,也可以采用元素分析法,也可以从反面考虑.答案480解析方法一(位置分析法)先从其他5人中安排2人分别站在最左边和最右边,再安排余下4人的位置,分为两步:第1步,从除明明外的5人中选2人分别站在最左边和最右边,有A种站法;第2步,余下4人(含明明)站在剩下的4个位置上,有A种站法.由分步乘法计数原理,知共有AA=480(种)不同的站法.方法二(元素分析法)先安排明明的位置,再安排其他5人的位置,分为两步:第1步,将明明排在除最左边、最右边外的任意位置上,有A种站法;第2步,余下5人站在剩下5个位置上,有A种站法.由分步乘法计数原理,知共有AA=480(种)不同的站法.方法三(反面求解法)6人没有限制的排队有A种站法,明明站在最左边或最右边时6人排队有2A种站法,因此符合条件的不同站法共有A-2A=480(种).题型二组合问题例2在一次国际抗震救灾中,从7名中方搜救队队员,4名外籍搜救队队员中选5名组成一支特殊搜救队到某地执行任务,按下列要求,分别计算有多少种组队方法.(1)至少有2名外籍搜救队队员;(2)至多有3名外籍搜救队队员.破题切入点第(1)问中“至少有2名”应包括2名、3名、4名,可以用直接法或间接法求解.第(2)问中,“至多有3名”应包括3名、2名、1名和没有,四种情况,应分类讨论.可用间接法.解(1)方法一(直接法)由题意,知特殊搜救队中“至少有2名外籍搜救队队员”可分为3类:①只有2名外籍队员,共有C·C种组队方法;②只有3名外籍队员,共有C·C种组队方法;③只有4名外籍队员,共有C·C种组队方法.根据分类加法计数原理,知至少有2名外籍搜救队队员共有C·C+C·C+C·C=301(种)不同的组队方法.方法二(间接法)由题意,知特殊搜救队中“至少有2名外籍搜救队队员”的对立事件为“至多有1名外籍搜救队队员”,可分为2类:①只有1名外籍搜救队队员,共有CC种组队方法;②没有外籍搜救队队员,共有CC种组队方法.所以至少有2名外籍搜救队队员共有C-C·C-C·C=301(种)不同的组队方法.(2)方法一(直接法)由题意,知“至多有3名外籍搜救队队员”可分为4类:①只有3名外籍搜救队队员,共有CC种方法;②只有2名外籍搜救队队员,共有CC种方法;③只有1名外籍搜救队队员,共有CC种方法;④没有外籍搜救队队员,共有C种方法.由分类加法计数原理,知至多有3名外籍搜救队队员共有C·C+C·C+C·C+C=455(种)不同的组队方法.方法二(间接法)由题意,知“至多有3名外籍搜救队队员”的对立事件为“至少有4名外籍搜救队队员”.因为至少有4名外籍搜救队队员,共有C×C种组队方法,所以至少3名外籍队员共有C-CC=455(种)不同组队方法.题型三排列与组合的综合应用问题例34个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?破题切入点把不放球的盒子先拿走,再放球到余下的盒子中并且不空盒子.解(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有CCC·A=144(种).(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.(3)确定2个空盒有C种方法.4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有CCA种方法;第二类有序均匀分组有·A种方法.故共有C(CCA+·A)=84(种).总结提高(1)求解排列、组合问题,应按元素的性质或题意要求进行分类,对事件发生的过程进行分步,做到分类标准明确,分步层次清楚,才能保证不“重”不“漏”.(2)关于“...