要点导学各个击破线面平行的判定与证明如图(1),在等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图(2)所示的三棱锥A-BCF,求证:DE∥平面BCF.图(1)图(2)(例1)[思维引导]将平面图形折成空间图形要弄清折前折后不变的关系,如ADDB=AEEC.[证明]在等边三角形ABC中,AD=AE,所以ADDB=AEEC,在折叠后的三棱锥A-BCF中也成立,所以DE∥BC.因为DE⊄平面BCF,BC平面BCF,所以DE∥平面BCF.(2014·山东卷)如图,在四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=12AD,E,F分别为线段AD,PC的中点,求证:AP∥平面BEF.(变式1)[证明]设AC∩BE=O,连接OF,CE.由于E为AD的中点,AB=BC=12AD,AD∥BC.所以AE∥BC,AE=AB=BC,因此四边形ABCE为菱形,所以O为AC的中点.又F为PC的中点,因此在△PAC中,AP∥OF.又OF平面BEF,AP⊄平面BEF,所以AP∥平面BEF.如图,在四棱锥P-ABCD中,PD⊥底面ABCD,AD⊥AB,CD∥AB,AB=2,CD=3,点M,N分别是PA,PB的中点.(变式2)(1)求证:MN∥平面PCD;(2)求证:四边形MNCD是直角梯形.[证明](1)因为点M,N分别是PA,PB的中点,所以MN∥AB.因为CD∥AB,所以MN∥CD.又因为CD平面PCD,MN⊄平面PCD,所以MN∥平面PCD.(2)因为MN=12AB=1,ED=3,所以MN≠CD,又MN∥CD,所以四边形MNCD是梯形.因为AD⊥AB,CD∥AB,所以CD⊥AD,又因为PD⊥底面ABCD,CD平面ABCD,所以CD⊥PD,又AD∩PD=D,所以CD⊥平面PAD.因为MD平面PAD,所以CD⊥MD,所以四边形MNCD是直角梯形.线面平行的性质的应用(2014·泰州模拟改编)如图,在四棱锥P-ABCD中,底面ABCD是正方形,E是PC的中点,F为线段AC上一点.若EF∥平面PBD,求AFFC的值.(例2)[思维引导]通过线面平行的性质,将空间的问题转化到一个平面PAC中,通过EF∥PO来确定点F的位置,求出AFFC的值.[解答]设AC∩BD=O,连接PO.因为EF∥平面PBD,底面ABCD是正方形,平面PBD∩平面PAC=PO,且EF平面PAC,所以EF∥PO,又E是PC的中点,所以OF=FC,AF=3FC,即AFFC=3.在空间四边形ABCD中,点E,F,G,H分别在AB,BC,CD,DA上,且四边形EFGH为平行四边形,求证:AC∥平面EFGH.(变式)[证明]如图,因为四边形EFGH是平行四边形,所以EF∥HG.又HG平面ACD,EF⊄平面ACD,所以EF∥平面ACD.又EF平面ABC,平面ABC∩平面ADC=AC,所以EF∥AC.又EF平面EFGH,AC⊄平面EFGH,所以AC∥平面EFGH.面面平行的判定(2014·江苏模拟)如图,在四棱锥E-ABCD中,△ABD为正三角形,EB=ED,且AB⊥BC,M,N分别为线段AE,AB的中点,求证:平面DMN∥平面BEC.(例3)[思维引导]分别证MN∥平面BCE和BC∥平面BCE,再利用面面平行的性质定理进行证明.[证明]因为N是AB的中点,△ABD为正三角形,所以DN⊥AB.因为BC⊥AB,所以DN∥BC.因为BC平面BCE,DN⊄平面BCE,所以BC∥平面BCE.又因为M为AE的中点,所以MN∥BE.因为MN⊄平面BCE,BE平面BCE,所以MN∥平面BCE,因为MN∩DN=N,所以平面MND∥平面BCE.[精要点评]在利用面面平行的性质定理进行证明时,不能直接根据DN∥BC和MN∥BE得出平面DMN∥平面BEC.如图,在三棱柱ABC-A1B1C1中,M,N,Q分别是AA1,BB1,B1C1的中点,求证:平面ABC1∥平面MNQ.(变式)[证明]在△B1BC1中,因为N,Q分别为B1B,B1C1的中点,所以QN∥BC1,又因为QN⊄平面ABC1,BC1平面ABC1,所以QN∥平面ABC1.在矩形A1B1BA中,因为M,N分别为AA1,BB1的中点,所以MN∥AB,又MN⊄平面ABC1,AB平面ABC1,所以MN∥平面ABC1.又因为QN∩MN=N,QN,MN平面MNQ,所以平面MNQ∥平面ABC1.直线与平面平行的探索问题(2014·四川卷)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.(例4)[思维引导]对于求某个特殊位置上的点这类问题,一种办法是由猜想定下点的位置,后证明;另一种办法是可先假定存在这个点,然后再根据点的特点找到这个点所满足的条件.[解答]线段AB上存在点M,且M为AB的中点,使得直线DE∥平面A1MC.证明如下:取线段AB的中点M,连接A1M,MC,A1C,AC1,连接MD,OE,OM.设O为A1C,AC1的交点,则MD,OE分别为△ABC,△ACC1的中位线,所以MD∥AC,且MD=12AC,OE∥AC,且OE=12AC,所以MDOE.从而四边形MDEO为平行四边形,所以DE∥MO.因为直线DE⊄平面A1MC,MO平面A1MC,所以直线DE∥平面A1MC....