▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚=^_^=成就梦想▁▂▃▄▅▆▇█▉▊▋▌▃▄▅▆▇██■▓点亮心灯~~~///(^v^)\\\~~~照亮人生▃▄▅▆▇██■▓三角函数的图象与性质一、知识网络二、高考考点(一)三角函数的性质1、三角函数的定义域,值域或最值问题;2、三角函数的奇偶性及单调性问题;常见题型为:三角函数为奇函数(或偶函数)的充要条件的应用;寻求三角函数的单调区间;比较大小的判断等.3、三角函数的周期性;寻求型三角函数的周期以及难度较高的含有绝对值的三角函数的周期.(二)三角函数的图象1、基本三角函数图象的变换;2、型三角函数的图象问题;重点是“五点法”作草图的逆用:由给出的一段函数图象求函数解析式;3、三角函数图象的对称轴或对称中心:寻求或应用;4、利用函数图象解决应用问题.(三)化归能力以及关于三角函数的认知变换水平.三、知识要点(一)三角函数的性质1、定义域与值域▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚=^_^=成就梦想▁▂▃▄▅▆▇█▉▊▋▌▃▄▅▆▇██■▓点亮心灯~~~///(^v^)\\\~~~照亮人生▃▄▅▆▇██■▓2、奇偶性(1)基本函数的奇偶性奇函数:y=sinx,y=tanx;偶函数:y=cosx.(2)型三角函数的奇偶性(ⅰ)g(x)=(x∈R)g(x)为偶函数由此得;同理,为奇函数.(ⅱ)为偶函数;为奇函数.3、周期性(1)基本公式(ⅰ)基本三角函数的周期y=sinx,y=cosx的周期为;y=tanx,y=cotx的周期为.(ⅱ)型三角函数的周期的周期为;的周期为.(2)认知(ⅰ)型函数的周期的周期为;的周期为.▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚=^_^=成就梦想▁▂▃▄▅▆▇█▉▊▋▌▃▄▅▆▇██■▓点亮心灯~~~///(^v^)\\\~~~照亮人生▃▄▅▆▇██■▓(ⅱ)的周期的周期为;的周期为.均同它们不加绝对值时的周期相同,即对y=的解析式施加绝对值后,该函数的周期不变.注意这一点与(ⅰ)的区别.(ⅱ)若函数为型两位函数之和,则探求周期适于“最小公倍数法”.(ⅲ)探求其它“杂”三角函数的周期,基本策略是试验――猜想――证明.(3)特殊情形研究(ⅰ)y=tanx-cotx的最小正周期为;(ⅱ)的最小正周期为;(ⅲ)y=sin4x+cos4x的最小正周期为.由此领悟“最小公倍数法”的适用类型,以防施错对象.4、单调性(1)基本三角函数的单调区间(族)依从三角函数图象识证“三部曲”:①选周期:在原点附近选取那个包含全部锐角,单调区间完整,并且最好关于原点对称的一个周期;②写特解:在所选周期内写出函数的增区间(或减区间);③获通解:在②中所得特解区间两端加上有关函数的最小正周期的整数倍,即得这一函数的增区间族(或减区间族)循着上述三部曲,便可得出课本中规范的三角函数的单调区间族.揭示:上述“三部曲”也适合于寻求简单三角不等式的解集或探求三角函数的定义域.(2)y=型三角函数的单调区间此类三角函数单调区间的寻求“三部曲”为①换元、分解:令u=,将所给函数分解为内、外两层:y=f(u),u=;②套用公式:根据对复合函数单调性的认知,确定出f(u)的单调性,而后利用(1)中公式写出关于u的不等式;③还原、结论:将u=代入②中u的不等式,解出x的取值范围,并用集合或区间形成结论.▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚=^_^=成就梦想▁▂▃▄▅▆▇█▉▊▋▌▃▄▅▆▇██■▓点亮心灯~~~///(^v^)\\\~~~照亮人生▃▄▅▆▇██■▓(二)三角函数的图象1、对称轴与对称中心(1)基本三角函数图象的对称性(ⅰ)正弦曲线y=sinx的对称轴为;正弦曲线y=sinx的对称中心为(,0).(ⅱ)余弦曲线y=cosx的对称轴为;余弦曲线y=cosx的对称中心(ⅲ)正切曲线y=tanx的对称中心为;正切曲线y=tanx无对称轴.认知:①两弦函数的共性:x=为两弦函数f(x)对称轴为最大值或最小值;(,0)为两弦函数f(x)对称中心=0.②正切函数的个性:(,0)为正切函数f(x)的对称中心=0或不存在.(2)型三角函数的对称性(服从上述认知)(ⅰ)对于g(x)=或g(x)=的图象x=为g(x)对称轴为最值(最大值或最小值);(,0)为两弦函数g(x)对称中心=0.(ⅱ)对于g(x)=的图象(,0)为两弦函数g(x)的...