乘法公式一、教学目标知识目标1.理解完全平方公式的意义,准确掌握两个公式的结构特征.2.熟练运用公式进行计算.3.熟练应用乘法公式做简便计算能力目标3.通过推导公式训练学生发现问题、探索规律的能力.4.培养学生用数形结合的方法解决问题的数学思想.情感目标5.渗透数学公式的结构美、和谐美.二、学法引导1.教学方法:尝试指导法、讲练结合法.2.学生学法:本节学习了乘法公式中的完全平方,一个是两数和的平方,另一个是两数差的平方,两者仅一个“符号”不同.相乘的结果是两数的平方和,加上(或减去)两数的积的2倍,两者也仅差一个“符号”不同,运用完全平方公式计算时,要注意:(1)切勿把此公式与公式混淆,而随意写成.(2)切勿把“乘积项”2ab中的2丢掉.(3)计算时,要先观察题目是否符合公式的条件.若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算.三、重点·难点及解决办法(一)重点掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算.(二)难点综合运用平方差公式与完全平方公式进行计算.(三)解决办法加强对公式结构特征的深入理解,在反复练习中掌握公式的应用.四、课时安排二个课时.五、教具学具准备投影仪或电脑、自制胶片.六、师生互动活动设计1.让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.2.引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力.3.举例分析如何正确使用完全平方公式,师生共练完成本课时重点内容.4.适时练习并总结,从实践到理论再回到实践,以指导今后的解题.七、教学步骤(一)明确目标本节课重点学习完全平方公式及其应用.(二)整体感知掌握好完全平方公式的关键在于能正确识别符合公式特征的结构,同时还要注意公式中2ab中2的问题,在解题过程中应多观察、多思考、多揣摩规律.(三)教学过程1.计算导入;求得公式(1)叙述平方差公式的内容并用字母表示;(2)用简便方法计算①103×97②103×103(3)请同学们自编一个符合平方差公式结构的计算题,并算出结果.学生活动:编题、解题,然后两至三个学生说出题目和结果.要想用好公式,关键在于辨认题目的结构特征,正确使用公式,这节课我们继续学习“乘法公式”.引例:计算,学生活动:计算,,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.或合并为:教师引导学生用文字概括公式.方法:由学生概括,教师给予肯定、否定或更正,同时板书.两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.【教法说明】①复习平方差公式,主要是引起回忆,巩固公式;编题在于提高兴趣.②有了平方差公式的推导过程,学生基本建立起了一些特殊多项式乘法的认识方法,因此推导完全平方公式可以由计算直接得出.证明:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b22.结合图形,理解公式根据图形完成下列问题:如图:A、B两图均为正方形,(1)图A中正方形的面积为,(用代数式表示)图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为。(2)图B中,正方形的面积为,Ⅲ的面积为,Ⅰ、Ⅱ、Ⅳ的面积和为,用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积。分别得出结论:学生活动:在教师引导下回答问题.【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想。3.探索新知,讲授新课(1)引例:计算教师讲解:在中,把x看成a,把3y看成b,则就可用完全平方公式来计算,即【教法说明】引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础.(2)例2运用完全平方公式计算:(2);(3)学生活动:学生独立在练习本上尝试解题,2个学生板演.【教法说明】让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例呈中(3)的计算,可对照公式直接计算,也可变形成,然后再进行计算,同时也可训练学生灵活运用学过的知识的能力.4.尝试反馈...