电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学三维设计立体几何初步简单几何体的表面积与体积VIP免费

高中数学三维设计立体几何初步简单几何体的表面积与体积_第1页
1/20
高中数学三维设计立体几何初步简单几何体的表面积与体积_第2页
2/20
高中数学三维设计立体几何初步简单几何体的表面积与体积_第3页
3/20
8.3简单几何体的表面积与体积新课程标准新学法解读1.求表面积问题,要充分利用柱体、锥体、台体的结构特征,准确把握各个面的形状和数量关系,尤其是侧面展开图与原知道球、柱体、锥体、台体的表面积和体积的计算公式,能用公式解决简单的实际问题.几何体的关系.2.求体积问题则要准确把握底面积和高,尤其是四面体,确定哪个面为底面要依据条件看哪个面和面上高的是否易求.3.关于球的体积和表面积问题,抓住球心,确定球的半径是解题关键.8.3.1棱柱、棱锥、棱台的表面积和体积[思考发现]1.棱长为3的正方体的表面积为()A.27C.54B.64D.36解析:选C根据表面积的定义,组成正方体的表面共6个,且每个都是边长为3的正方形.从而,其表面积为6×32=54.故选C.2.正方体的表面积为96,则正方体的体积为()A.486C.16B.64D.96解析:选B设正方体的棱长为a,则6a2=96,∴a=4.∴其体积V=a3=43=64.故选B.3.已知一个三棱锥的每一个面都是边长为1的正三角形,则此三棱锥的表面积为()A.4C.23B.34D.33,所以此三棱锥的表面积为4解析:选D三棱锥的每个面(正三角形)的面积都为4×3=3.故选D.44.已知棱台的上、下底面积分别为4,16,高为3,则棱台的体积为________.1解析:由棱台的体积公式可求得其体积为V=(4+4×16+16)×3=28.31答案:28[系统归纳]1.棱柱、棱锥、棱台的侧面积与表面积(1)将棱柱、棱锥、棱台的侧面展开分别是平行四边形、若干个三角形、若干个梯形组成的平面图形,侧面展开图的面积就是棱柱、棱锥、棱台的侧面积.(2)棱柱、棱锥、棱台的表面积等于它们的侧面积与各自的底面积的和.2.对于棱柱、棱锥、棱台的体积公式的几点认识(1)等底、等高的两个棱柱的体积相同.(2)等底、等高的棱锥和棱柱的体积之间的关系可以通过实验得出,等底、等高的棱柱的体积是棱锥的体积的3倍.(3)柱体、锥体、台体的体积公式之间的关系11S′=SS′=0V=Sh――→V=(S′+S′S+S)h――→V=Sh.33(4)求棱台的体积可转化为求棱锥的体积.根据棱台的定义进行“补形”,还原为棱锥,采用“大棱锥”减去“小棱锥”的方法求棱台的体积.[例1]现有一个底面是菱形的直四棱柱,它的体对角线长为9和15,高是5,求该直四棱柱的侧面积.棱柱、棱锥、棱台的侧面积与表面积[解]如图,设底面对角线AC=a,BD=b,交点为O,对角线A1C=15,B1D=9,∴a2+52=152,b2+52=92,∴a2=200,b2=56. 该直四棱柱的底面是菱形,∴AB2=AC2+BD2=a+b=200+56=64,224422∴AB=8.2∴直四棱柱的侧面积S=4×8×5=160.求棱柱、棱锥、棱台的表面积的基本步骤(1)清楚各侧面的形状,求出每个侧面的面积.(2)求出其底面的面积.(3)求和得到表面积.注意:组合体的表面积应注意重合部分的处理.[变式训练]已知四棱台的上、下底面分别是边长为4和8的正方形,侧面是腰长为8的等腰梯形,则该四棱台的表面积为________.解析:如图,在四棱台ABCDA1B1C1D1中,过B1作B1F⊥BC,垂足为F,1在Rt△B1FB中,BF=×(8-4)=2,B1B=8,2故B1F=82-22=215,1所以S梯形BB1C1C=×(8+4)×215=1215,2故四棱台的侧面积S侧=4×1215=4815,所以S表=4815+4×4+8×8=80+4815.答案:80+4815[例2](1)如图所示,正方体ABCDA1B1C1D1的棱长为1,E为线段B1C上的一点,则三棱锥ADED1的体积为________.棱柱、棱锥、棱台的体积第(1)题图第(2)题图(2)如图,某几何体下面部分为正方体ABCDA′B′C′D′,上面部分为正四棱锥SABCD,若几何体的高为5,棱AB=2,则该几何体的体积为________.3(3)(2019·全国卷Ⅲ)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCDA1B1C1D1挖去四棱锥OEFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D打印所用原料密度为0.9g/cm3.不考虑打印损耗,制作该模型所需原料的质量为________g.111[解析](1)VADED1=VEDD1A=××1×1×1=.3261(2)V正方体=23=8,VSABCD=×22×(5-2)=4.3V=V正方体+VSABCD=12.(3)由题知挖去的四棱锥的底面是一个菱形,对角线长分别为6cm和4cm,11故V挖去的四棱锥=××...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学三维设计立体几何初步简单几何体的表面积与体积

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部