1.8排列、组合、二项式定理命题角度1计数原理、排列与组合问题高考真题体验·对方向1.(2017全国Ⅱ·6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种答案D解析先把4项工作分成3份有C42C21C11A22种情况,再把3名志愿者排列有A33种情况,故不同的安排方式共有C42C21C11A22·A33=36种,故选D.2.(2016全国Ⅱ·5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9答案B解析由题意知,小明从街道的E处出发到F处的最短路径有6条,再从F处到G处的最短路径有3条,则小明到老年公寓可以选择的最短路径条数为6×3=18,故选B.3.(2016全国Ⅲ·12)定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,ak中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个答案C解析由题意知a1=0,a8=1,则满足题意的a1,a2,…,a8的可能取值如下:综上可知,不同的“规范01数列”共有14个.4.(2017浙江·16)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)答案660解析由题意可得,总的选择方法为C84C41C31种方法,其中不满足题意的选法有C64C41C31种方法,则满足题意的选法有:C84C41C31−C64C41C31=660种.5.(2018全国Ⅰ·15)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)答案16解析方法一:①当3人中恰有1位女生时,有C21C42=12种选法.②当3人中有2位女生时,有C22C41=4种选法.故不同的选法共有12+4=16种.方法二:6人中选3人共有C63种选法,当3人全是男生时有C43种选法,所以至少有1位女生入选时有C63−C43=16种选法.6.(2017天津·14)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有个.(用数字作答)答案1080解析①没有一个数字是偶数的四位数有A54=120个;②有且只有一个数字是偶数的四位数有C41C53A44=960个.所以至多有一个数字是偶数的四位数有120+960=1080个.典题演练提能·刷高分1.有5名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两位同学不能相邻,则不同的站法有()A.8种B.16种C.32种D.48种答案B解析首先将甲排在中间,乙、丙两位同学不能相邻,则两人必须站在甲的两侧,选出一人排在左侧,有C21A21种方法,另外一人排在右侧,有A21种方法,余下两人排在余下的两个空,有A22种方法,综上可得,不同的站法有C21A21A21A22=16种.2.上海某小学组织6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的方案有()A.A62×A54种B.A62×54种C.C62×A54种D.C62×54种答案D解析因为有且只有两个年级选择甲博物馆,所以参观甲博物馆的年级有C62种情况,其余年级均有5种选择,所以共有54种情况,根据乘法原理可得C62×54种情况,故选D.3.将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有()A.480种B.360种C.240种D.120种答案C解析第一步:先从4个盒子中选一个盒子准备装两个球,有4种选法;第二步:从5个球里选出两个球放在刚才的盒子里,有C52种选法;第三步:把剩下的3个球全排列,有A33种排法,由乘法分步原理得不同方法共有4C52A33=240种,故选C.4.福州西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有()A.90种B.180种C.270种D.360种答案B解析第一步,为甲地选一名志愿者,有C61=6种选法;第二步,为乙地选一名志愿者,有C51=5种选法;第三步,为剩下两个展区各安排两个人,有C42C22=6种选法.故不同的安排方案共有6×5×6=180种.故选B.5.用6种不同的颜色对正四棱锥的8条棱染色,每个顶点出发的棱的颜色各不相同,不同的染色方案共有()A.14400种B.28800种C.38880种D.43200种答案C解析从P点出发的4条侧棱一定要用4种不同的颜色,有A64=360种不同的方案,接下来底面的染色根据是否使用剩下...