《小数、分数、百分数》教学设计教学目标:1.进一步理解小数、分数、百分数和比的意义,沟通它们之间的联系,构建知识体系,形成知识网络。2.体会数学与生活之间的联系,增强应用数学的意识,体会数学的魅力。3、感受学习过程中与同伴交流的收获与困惑,形成实事求是和敢于质疑的态度,发展自信心。教学重点、难点:重点:1、小数、分数、百分数和比的意义,联系与区别。2、小数、分数、百分数和比在实际生活中的综合应用。难点:1、分数与百分数意义的区别。2、小数、分数、百分数和比在实际生活中的综合应用。教学过程:一、导入。师:在前一节课我们复习了整数。在小学阶段,我们还学习一些什么数?举例说明。在学生回答的基础上教师板书部分分数、小数、百分数,然后揭示课题。这节课我们一起来复习分数、小数等方面的知识。板书:小数、分数、百分数和比。二、回顾与交流。1、分数、小数产生的背景与必要性课件出示教材小朋友测量课桌和黑板长的情景,学生观察。师:你们发现了什么?(在实际测量中,用一定的单位长度度量物体的长度时有时能够整数的结果,有时得不到整数结果,于是就产生了一种新的需要,这样就出现了分数、小数)2、以3/4为例来认识分数、小数、百分数和比的意义、联系与区别。(1)、以3/4为例结合具体情境说说分数的意义。师:刚才同学们举出了一些小数、百分数、分数,你能联系具体情境说说3/4的意义吗?生1:把一个图形平均分成4份,其中的3份涂色,涂色的部分就是这个整体的3/4。生2:一个袋子里有红球3个,白球1个,红球是总数的3/4。生3:把3米长的绳子平均剪成4段,每段长就是3/4米。生4:一个长方形,长4厘米,宽3厘米,宽是长的3/4。…………(2)、认识分数与除法、比、百分数、小数的关系。师:以生3为例,把3米长的绳子平均剪成4段,每段长就是3/4米,我们还可以说每段长多少米?(0.75米),引出小数。师:你是怎样算的,学生说出3÷4,引出分数和除法的联系;以生2为例,红球占总数的百分之几?引出百分数,红球与总数的比是多少引出比;以生4为例,长与宽的长度是几比几引出比。从而沟通分数、比、百分数之间的联系,分数、比、除法之间的关系。(如3/4=3︰4=3÷4。比与除法相比,比的前项相当于除法中的被除数,比的后项相当于除法中的除数。比与分数相比,比的前项相当于分子,比的后项相当于分母。比表示两个数之间的倍数关系;除法是一种运算;分数既可以表示具体数量,又可以表示两个量之间的倍数关系。)由3/4=3:4=3÷4=6:()=()÷20=9/(),进一步认识分数与除法的关系,在除法中有“商不变的规律”,分数有“分数基本性质”。独立完成课本第书本69页“巩固与应用”的第1题“读一读”。2010年全国总用水量6022亿立方米,其中生活用水占12.7%,工业用水占24.0%,农业用水占61.3%,生态用水占2.0%。与2009年比较,全国总用水量增加56.8亿立方米,其中生活用水增加17.7亿立方米,工业用水增加56.4亿立方米,农业用水减少34.1亿立方米,生态与环境补水增加16.8亿立方米。师:从上面的资料中你了解到什么?你能解释一下这些数据的具体意义吗?你有哪些体会和感想?(3)、分数、小数与百分数的区别师:在前面,我们发现小数、分数和百分数之间可以进行互化,但我们能说把3米长的绳子平均剪成4段,每段长就是3/4米,能说成75%米吗?让学生比较分数与百分数意义的区别。分数可以表示一个具体的量,如3/4米,还可以表示两个量的倍数关系;而百分数只能表示两个数之间的关系,即表示一个量是另一个量的百分之几,不能带上计量单位来表示具体的量。(4)、复习分数单位,体会“单位”的作用。师:我们知道小数的计数单位是“十分之一、百分之一、千分之一、万分之一……”,现在我这有几个分数:3/5,7/8,2/9,7/12,1/3,3/4。请你分别说出它们的计数单位。师:分数的计数单位和小数的计数单位有什么相同点和不同?(小数实际上是十进制分数的一种,都是平均分,不过小数是将一个数平均分成10份、100份、1000份……,取其中的几份,而分数平均分的份数范围更广些。)三、巩固与应用1、课本69页“巩固与应用”的第3、4题挑选部分题目合并为...