2015高三数学知识点汇总圆锥曲线部分一、椭圆:(1)椭圆的定义:平面内与两个定点的距离的和等于常数(大于)的点的轨迹。第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数的点的轨迹。其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距;定直线叫做准线。常数叫做离心率。注意:表示椭圆;表示线段;没有轨迹;(2)椭圆的标准方程、图象及几何性质:中心在原点,焦点在轴上中心在原点,焦点在轴上标准方程参数方程为参数)为参数)图形顶点对称轴轴,轴;短轴为,长轴为焦点焦距离心率(离心率越大,椭圆越扁)准线通径(为焦准距)焦半径焦点弦xOF1F2PyA2A1B1B2xOF1F2PyA2B2B11A1仅与它的中点的横坐标有关仅与它的中点的纵坐标有关焦准距二、双曲线:(1)双曲线的定义:平面内与两个定点的距离的差的绝对值等于常数(小于)的点的轨迹。第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数的点的轨迹。其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距;定直线叫做准线。常数叫做离心率。注意:与()表示双曲线的一支。表示两条射线;没有轨迹;(2)双曲线的标准方程、图象及几何性质:中心在原点,焦点在轴上中心在原点,焦点在轴上标准方程图形顶点对称轴轴,轴;虚轴为,实轴为焦点焦距离心率(离心率越大,开口越大)准线渐近线通径(为焦准距)xOF1F2PyA2A1xOF1PB2B1F22y焦半径在左支在右支在下支在上支焦准距(3)双曲线的渐近线:①求双曲线的渐近线,可令其右边的1为0,即得,因式分解得到。②与双曲线共渐近线的双曲线系方程是;(4)等轴双曲线为,其离心率为三、抛物线:(1)抛物线的定义:平面内与一个定点的距离等于到一条定直线的距离点的轨迹。其中:定点为抛物线的焦点,定直线叫做准线。(2)抛物线的标准方程、图象及几何性质:焦点在轴上,开口向右焦点在轴上,开口向左焦点在轴上,开口向上焦点在轴上,开口向下标准方程图形顶点对称轴轴轴焦点离心率准线通径焦半径焦点弦(当时,为——通径)焦准距xOFPylOFPylxOFPylxOFPylx3如:是过抛物线焦点的弦,是的中点,是抛物线的准线,,为垂足,,,,为垂足,求证:(1);(2);(3);(4)设交抛物线于,则平分;(5)设,则,;(6);(7)三点在一条直线上(8)过作,交轴于,求证:,;四、圆锥曲线的统一定义:若平面内一个动点到一个定点和一条定直线的距离之比等于一个常数,则动点的轨迹为圆锥曲线。其中定点为焦点,定直线为准线,为离心率。当时,轨迹为椭圆;当时,轨迹为抛物线;当时,轨迹为双曲线。五、轨迹方程的求法:(1)直接法:如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只需把这种关系“翻译”成含的等式就得到曲线的轨迹方程。如:已知底边的长为8,两底角之和为,求顶点且的轨迹方程。(2)定义法:其动点的轨迹符合某一基本轨迹的定义,则根据定义直接求出动点的轨迹方程。如:已知圆,定点,若是圆上的动点,的垂直平分线交于,求的轨迹方程。(3)几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代人点的坐标较简单。如:是的直径,且,为圆上一动点,作,垂足为,在上取点,使,求点的轨迹。(4)相关点法(代人法):有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的;如果相关点所满足的条件是明显的,或是可分析的,这时可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程。如:在双曲线的两条渐近线上分别取点和,使(其中为坐标原点,为双曲线的半焦距),求中点的轨迹。(5)交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常常通过解方程组得出交点(含参数)的坐标,再消去参数得出所求轨迹的方程。常与参数法并用。如:己知两点,以及一直线,设长为的线段在直线上运动,求直线和的交点的轨迹方程。(6)整体法(设而不求法):当探求的轨迹较复杂时,可扩大考察视角,将问题中的条件、结论4xOFAylBNDMEQH...