章末综合测评(七)概率(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1365石B[因为样品中米内夹谷的比例为,所以这批米内夹谷为1534×≈169(石).]2.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3B.0.4C.0.6D.0.7B[某群体中的成员分为只用现金支付、既用现金支付也用非现金支付、不用现金支付,它们彼此是互斥事件,所以不用现金支付的概率为1-(0.15+0.45)=0.4.]3.某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少有一名女生”与事件“全是男生”()A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件C[“至少有一名女生”包括“一男一女”和“两名女生”两种情况,这两种情况再加上“全是男生”构成全集,且不能同时发生,故“至少有一名女生”与“全是男生”既是互斥事件,也是对立事件.]4.抛掷一颗质地均匀的骰子,观察掷出的点数,设事件A为“出现奇数点”,事件B为“出现2点”,已知P(A)=,P(B)=,则“出现奇数点或2点”的概率为()A.B.C.D.D[ “出现奇数点”与“出现2点”两事件互斥,∴P=P(A)+P(B)=+=.]5.2020年暑假里,甲乙两人一起去游泰山,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后1小时他们同在一个景点的概率是()A.B.C.D.D[最后一个景点甲有6种选法,乙有6种选法,共有36种,他们选择相同的景点有6种,所以P==,所以选D.]6.容量为20的样本数据,分组后的频数如下表:分组[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]频数234542则样本数据落在区间[10,40)的频率为()A.0.35B.0.45C.0.55D.0.65B[由表知[10,40)的频数为2+3+4=9,所以样本数据落在区间[10,40)的频率为=0.45.]7.两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为()A.B.C.D.B[两名同学分3本不同的书,试验的样本空间为Ω={(0,3),(1a,2),(1b,2),(1c,2),(2,1a),(2,1b),(2,1c),(3,0)},共8个样本点,其中一人没有分到书,另一人分到3本书的样本点有2个,∴一人没有分到书,另一人分得3本书的概率P==.]8.端午节放假,甲回老家过节的概率为,乙、丙回老家过节的概率分别为,.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为()A.B.C.D.B[“甲、乙、丙回老家过节”分别记为事件A,B,C,则P(A)=,P(B)=,P(C)=,所以P()=,P()=,P()=.由题知A,B,C为相互独立事件,所以三人都不回老家过节的概率P()=P()P()·P()=××=,所以至少有一人回老家过节的概率P=1-=.]二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,有选错的得0分)9.甲、乙两人做游戏,下列游戏中公平的是()A.抛一枚骰子,向上的点数为奇数则甲胜,向上的点数为偶数则乙胜B.同时抛两枚相同的骰子,向上的点数之和大于7则甲胜,否则乙胜C.从一副不含大、小王的扑克牌中抽一张,扑克牌是红色则甲胜,是黑色则乙胜D.甲,乙两人各写一个数字,若是同奇或同偶则甲胜,否则乙胜ACD[对于A、C、D甲胜,乙胜的概率都是,游戏是公平的;对于B,点数之和大于7和点数之和小于7的概率相等,但点数等于7时乙胜,所以甲胜的概率小,游戏不公平.故选ACD.]10.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.2,0.2,0.3,0.3,则下列说法错误的是()A.A+B与C是互斥事件,也是对立事件B.B+C与D是互斥事件,也是对立事件C.A+C与B+D是互斥事件,但不是对立事件D.A与B+C+D是互斥事件,也是对立事件ABC[由于A,B,C,D彼此互斥,且A+B+C+D是一个必然事件...