电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

全等三角形小结与复习 (2)VIP免费

全等三角形小结与复习 (2)_第1页
1/31
全等三角形小结与复习 (2)_第2页
2/31
全等三角形小结与复习 (2)_第3页
3/31
小结与复习第十二章全等三角形能够完全重合的两个图形叫全等图形,能够完全重合的两个三角形叫全等三角形.把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的角叫做对应角.重合的边叫做对应边,一、全等三角形的性质要点梳理BCEF其中点A和,点B和,点C和__是对应顶点.AB和,BC和,AC和是对应边.∠A和,∠B和,∠C和是对应角.AD点D点E点FDEEFDF∠D∠E∠FABCDEF性质:全等三角形的对应边相等,对应角相等.如图: △ABC≌△DEF,∴AB=DE,BC=EF,AC=DF(),∠A=∠D,∠B=∠E,∠C=∠F().全等三角形的对应边相等全等三角形的对应角相等应用格式:用符号语言表达为:在△ABC与△DEF中∴△ABC≌△DEF.(SAS)1.两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).FEDCBAAC=DF,∠C=∠F,BC=EF,二、三角形全等的判定方法∠A=∠D,(已知)AB=DE,(已知)∠B=∠E,(已知)在△ABC和△DEF中,∴△ABC≌△DEF.(ASA)2.有两角和它们夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).用符号语言表达为:FEDCBA3.三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”).ABCDEF在△ABC和△DEF中,∴△ABC≌△DEF.(SSS)AB=DE,BC=EF,CA=FD,用符号语言表达为:4.有两角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).5.斜边和一条直角边对应相等的两个直角三角形全等.简写成“斜边、直角边”或“HL”.ABCDEF注意:①对应相等.“②HL”仅适用直角三角形,③书写格式应为: 在Rt△ABC和Rt△DEF中,AB=DE,AC=DF,∴Rt△ABC≌Rt△DEF(HL)图形已知条件结论角的平分线的性质PCPCOP平分∠AOBPDOA⊥于DPEOB⊥于EPD=PEOP平分∠AOBPD=PEPDOA⊥于DPEOB⊥于E角的平分线的判定三、角平分线的性质与判定例1如图,已知△ACE≌DBF△.CE=BF,AE=DF,AD=8,BC=2.(1)求AC的长度;(2)试说明CEBF∥.解:(1) △ACE≌DBF△,∴AC=BD,则AB=DC, BC=2,∴2AB+2=8,∴AB=3,∴AC=3+2=5;(2) △ACE≌DBF△,∴∠ECA=FBD∠,∴CEBF∥.考点讲练两个全等三角形的长边与长边,短边与短边分别是对应边,大角与大角,小角与小角分别是对应角.有对顶角的,两个对顶角一定为一对对应角.有公共边的,公共边一定是对应边.有公共角的,公共角一定是对应角.方法总结1.如图所示,△ABD≌ACD△,∠BAC=90°.(1)求∠B;(2)判断AD与BC的位置关系,并说明理由.针对训练解:(1) △ABD≌ACD△,∴∠B=C∠,又 ∠BAC=90°,∴∠B=C=45°∠;(2)ADBC⊥.理由: △ABD≌ACD△,∴∠BDA=CDA∠, ∠BDA+CDA=180°∠,∴∠BDA=CDA=90°∠,∴ADBC⊥.例2已知,∠ABC=∠DCB,∠ACB=∠DBC,求证:△ABC≌△DCB.∠ABC=∠DCB(已知),BC=CB(公共边),∠ACB=∠DBC(已知),证明:在△ABC和△DCB中,△ABC≌△DCB(ASA).BCAD【分析】运用“两角和它们的夹边对应相等两个三角形全等”进行判定.2.已知△ABC和△DEF,下列条件中,不能保证△ABC和△DEF全等的是()A.AB=DE,AC=DF,BC=EFB.∠A=∠D,∠B=∠E,AC=DFC.AB=DE,AC=DF,∠A=∠DD.AB=DE,BC=EF,∠C=∠FD针对训练3.如图所示,AB与CD相交于点O,∠A=∠B,OA=OB添加条件,所以△AOC≌△BOD理由是.AODCB∠C=∠D或∠AOC=∠BODAAS或ASA考点三全等三角形的性质与判定的综合应用例3如图,在△ABC中,AD平分∠BAC,CE⊥AD于点G,交AB于点E,EF∥BC交AC于点F,求证:∠DEC=∠FEC.ABCDFEG【分析】欲证∠DEC=∠FEC由平行线的性质转化为证明∠DEC=∠DCE只需要证明△DEG≌△DCG.ABCDFEG证明: CE⊥AD,∴∠AGE=∠AGC=90°.在△AGE和△AGC中,∠AGE=∠AGC,AG=AG,∠EAG=∠CAG,∴△AGE≌△AGC(ASA),∴GE=GC. AD平分∠BAC,∴∠EAG=∠CAG,.ABCDFEG在△DGE和△DGC中,EG=CG,∠EGD=∠CGD=90°,DG=DG.∴△DGE≌△DGC(SAS).∴∠DEG=∠DCG. EF//BC,∴∠FEC=∠ECD,∴∠DEG=∠FEC.利用全等三角形证明角相等,首先要找到两个角所在的两个三角形,看它们全等的条件够不够;有时会用到等角转换,等角转换的途径很多,如:余角,补角的性质、平行线的性质等,必要时要想到添加辅助线.方法总...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

全等三角形小结与复习 (2)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部