电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

第二章随机变量及其分布22《事件的相互独立性》VIP免费

第二章随机变量及其分布22《事件的相互独立性》_第1页
1/23
第二章随机变量及其分布22《事件的相互独立性》_第2页
2/23
第二章随机变量及其分布22《事件的相互独立性》_第3页
3/23
2.2.2事件的相互独立性1.理解两个事件相互独立的概念.2.能进行一些与事件独立性有关的概率的计算.3.通过对实例的分析,会进行简单的应用.本课主要学习事件相互独立性。通过知识回顾、问题探究引入新课,得到事件相互独立概念,相互独立事件同时发生的概率公式。引导学生认识相互独立事件与互斥事件概念的区别,通过练习引导学生巩固概念,由例1、例2、例3问题解决加深对较为复杂的实际问题求概率的解题方法,强调解决应用问题的思想方法与一般步骤。在概念教学过程中,通过实例引导学生理解概念、应用比较法让学生区分新旧概念的实质突出本节课重点,采用例题与变式结合的方法,通过例1、例2、例3问题分析与讲解掌握求相互独立事件同时发生的概率实际问题的分析、解决问题的思想方法,突破本节教学难点。①什么叫做互斥事件?什么叫做对立事件?②两个互斥事件A、B有一个发生的概率公式是什么?③若A与A为对立事件,则P(A)与P(A)关系如何?不可能同时发生的两个事件叫做互斥事件;如果两个互斥事件有一个发生时另一个必不发生,这样的两个互斥事件叫对立事件.P(A+B)=P(A)+(B)P(A)+P(Ā)=1④条件概率设事件A和事件B,且P(A)>0,在已知事件A发生的条件下事件B发生的概率,叫做条件概率。记作P(B|A).⑤条件概率计算公式:()()(|)()()nABPABPBAnAPA注意条件:必须P(A)>0我们知道,当事件A的发生对事件B的发生有影响时,条件概率P(B|A)和概率P(B)一般是不相等的,但有时事件A的发生,看上去对事件B的发生没有影响,比如依次抛掷两枚硬币的结果,抛掷第一枚硬币的结果(事件A)对抛掷第二枚硬币的结果(事件B)没有影响,这时P(B|A)与P(B)相等吗??BA"."B,""A,3,13发生的概率吗的发生会影响事件事件最后一名同学抽到奖券为事件抽到奖券第一名同学没有为事件同学有放回地抽取名现分别由张能中奖张奖券中只有思考.BPAPA|BPAPABP,BPA|BP,,31,,.AB显然有放回地抽取奖券时最后一名同学也是从原来的张奖券中任取张因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响即事件的发生不会影响事件发生的概率于是1、事件的相互独立性相互独立事件及其同时发生的概率设A,B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立。即事件A(或B)是否发生,对事件B(或A)发生的概率没有影响,这样两个事件叫做相互独立事件。②如果事件A与B相互独立,那么A与B,A与B,A与B是不是相互独立的?注:①区别:互斥事件和相互独立事件是两个不同概念:两个事件互斥是指这两个事件不可能同时发生;两个事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响。相互独立2、相互独立事件同时发生的概率公式:“第一个同学没抽到奖劵、第三个同学抽到奖劵”是一个事件,它的发生就是事件A,B同时发生,将它记作A•B这就是说,两个相互独立事件同时发生的概率,等于每个事件的概率的积。一般地,如果事件A1,A2……,An相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1·A2……An)=P(A1)·P(A2)……P(An)两个相互独立事件A,B同时发生,即事件A•B发生的概率为:)()()(BPAPBAP判断事件A,B是否为互斥,互独事件?1.篮球比赛“罚球二次”.事件A表示“第1球罚中”,事件B表示“第2球罚中”.2.篮球比赛“1+1罚球”.事件A表示“第1球罚中”,事件B表示“第2球罚中”.3.袋中有4个白球,3个黑球,从袋中依次取2球.事件A:“取出的是白球”.事件B:“取出的是黑球”.(不放回抽取)4.袋中有4个白球,3个黑球,从袋中依此取2球.事件A为“取出的是白球”.事件B为“取出的是白球”.(放回抽取)A与B为互独事件A与B不是互独事件也非互斥事件A与B为互独事件A与B为非互独是互斥事件例1某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券。奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动。如果两次兑奖活动的中奖概率都是0.05,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码。1"1","2","".,.,ABABAB记第次抽奖抽到某一指定号...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

第二章随机变量及其分布22《事件的相互独立性》

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部