电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

11.2.1三角形的内角和.2.1探索三角形的内角和VIP免费

11.2.1三角形的内角和.2.1探索三角形的内角和_第1页
1/28
11.2.1三角形的内角和.2.1探索三角形的内角和_第2页
2/28
11.2.1三角形的内角和.2.1探索三角形的内角和_第3页
3/28
八年级上册11.2与三角形有关的角第一课时三角形的内角和1.探索并证明三角形内角和定理.2.能运用三角形内角和定理解决简单问题.学习重点:探索并证明三角形内角和定理,体会证明的必要性.学习目标:生活中的三角形在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷.同学们,你们知道其中的道理吗?内角三兄弟之争方法:度量、剪拼图、折叠学生自主探究:三角形的内角和问题1在小学我们已经知道任意一个三角形三个内角的和等于180°,你还记得是怎么发现这个结论的吗?请大家利用手中的三角形纸片进行探究.量一量合作要求:(1)小组分工(2)用量角器测量你们小组内的三角形每个内角的度数。(3)最后要求计算出三个角的和是多少?填在表格里。∠1∠2∠3内角和发现规律锐角三角形直角三角形钝角三角形3231平角:1800三角形的内角和是1800。21拼一拼212233钝角三角形11133锐角三角形112233直角三角形2折一折再探索并证明三角形内角和定理追问1运用度量的方法,得出的三个内角的和都是180°吗?为什么?测量可能会有误差.再探索并证明三角形内角和定理追问2通过度量、剪拼图或折叠的方法验证了手中的三角形纸片的三个内角和等于180°,但我们手中的三角形只是所有三角形中有限的几个,而形状不同的三角形有无数多个,我们如何能得出“所有的三角形的三个内角的和都等于180°”这个结论呢?需要通过推理的方法去证明.再探索并证明三角形内角和定理问题2你能从以上的操作过程中受到启发,想出证明“三角形内角和等于180°”的方法吗?再探索并证明三角形内角和定理追问1在下图中,∠B和∠C分别拼在∠A的左右,三个角合起来形成一个平角,出现了一条过点A的直线l,直线l与边BC有什么位置关系?直线l与边BC平行.BBCCAl再探索并证明三角形内角和定理追问2在操作过程中,我们发现了与边BC平行的直线l,由此,你又能受到什么启发?你能发现证明“三角形内角和等于180°”的思路吗?通过添加与边BC平行的辅助线l,利用平行线的性质和平角的定义即可证明结论.BBCCAl证明:过点A作直线l,使l∥BC. l∥BC,∴∠2=∠4,∠3=∠5(两直线平行,内错角相等).再探索并证明三角形内角和定理追问3结合下图,你能写出已知、求证和证明吗?已知:△ABC.求证:∠A+∠B+∠C=180°.ABC24153l ∠1+∠4+∠5=180°(平角定义),∴∠A+∠B+∠C=180°(等量代换).再探索并证明三角形内角和定理追问4通过前面的操作和证明过程,你能受到什么启发?你能用其他方法证明此定理吗?证法2:延长BC到D,过C作CE∥BA,∴∠A=∠1,(两直线平行,内错角相等)∠B=∠2.(两直线平行,同位角相等)又 ∠1+∠2+∠ACB=180°,∴∠A+∠B+∠ACB=180°.21EDCBA证法3:过A作AE∥BC,∴∠B=∠BAE,(两直线平行,内错角相等)∠EAB+∠BAC+∠C=180°,(两直线平行,同旁内角互补)∴∠B+∠C+∠BAC=180°.CBEA再探索并证明三角形内角和定理追问4通过前面的操作和证明过程,你能受到什么启发?你能用其他方法证明此定理吗?CAB12345lP6m再探索并证明三角形内角和定理追问4通过前面的操作和证明过程,你能受到什么启发?你能用其他方法证明此定理吗?CAB12345lP6mn再探索并证明三角形内角和定理追问4通过前面的操作和证明过程,你能受到什么启发?你能用其他方法证明此定理吗?CAB12345lP6mn运用三角形内角和定理例1如图,在△ABC中,∠BAC=40°,∠B=75°,AD是△ABC的角平分线.求∠ADB的度数.CBDA运用三角形内角和定理例2如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.从B岛看A,C两岛的视角∠ABC是多少度?从C岛看A,B两岛的视角∠ACB呢?北北CABDE课堂练习练习1如图,说出各图中∠1的度数.80°50°130°105°122°1(1)(2)(3)练习2如图,从A处观测C处的仰角∠CAD=30°,从B处观测C处的仰角∠CBD=45°.从C处观测A,B两处的视角∠ACB是多少?课堂练习ABDC(1)...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

11.2.1三角形的内角和.2.1探索三角形的内角和

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部