第4章最优资产组合选择第一节资产组合的有效边界一、一个无风险资产与一个风险资产的组合假设投资者投资到风险资产的财富比例为w,投资到无风险资产的财富比例为1-w,则投资组合的期望收益和标准差可以写成如下形式:进而容易得到投资组合期望收益与标准差之间的关系:上式就是当市场中只有一个风险资产和一个风险资产的时候,资产组合所有可能的风险-收益集合,又称为投资组合可行集。(1),pfpErwErwrwfpfpErrErr在“期望收益-标准差”平面中对应着一条直线,穿过无风险资产rf和风险资产r,我们称这条直线为资本配置线(CapitalAllocationLine)资本配置线的斜率等于资产组合每增加以单位标准差所增加的期望收益,也即每单位额外风险的额外收益。因此,我们有时候也将这一斜率称为报酬与波动性比率fpfpErrErr一般来讲,存款利率要低于贷款利率。如果把存款利率视为无风险收益率,那么投资者的贷款利率就要高于无风险利率。此时,资本配置线就变成一条折线。二、两个风险资产的组合假设市场中的资产是两个风险资产,例如一个股票和一个公司债券,且投资到股票上的财富比例为w,则投资组合的期望收益和标准差为:同样,容易得到,两个风险资产构成的资产组合的期望和标准差之间的额关系式:其中:222222222,(1)(1)2(1)(,)(1)2(1)pSBpSBSBSBSBSBErwErwErwwwwCovrrwwww22()()pppaErbErc22,222,22222,22222SBSBSBSBSSBBSBSBSBSBBSSBBSSBSBSBaErErErErErErbErErErErErErcErEr情形一,此时,两个资产的收益率是完全正相关的,我们容易得到:情形二,此时,两个资产的收益率是完全负相关的,类似可以得到:,1SB22(1)(1),01()PSBpSBSBpPBBSBwwwwwErErErEr如果22(1)(),(),PSBSBBSBBSBSBpSBBSBBSBSBwwErErErwErErErErw当时当时,1SB情形三,此时,在期望-标准差平面中对应着两条双曲线。考虑到经济含义,我们只需考虑坐标轴第一象限内的部分:在情形二和情形三中,我们可以根据最小方差点将可行集分为两个部分:位于最小方差点上方的部分(SE1和SE2)和位于最小方差点下方的部分(E1B和E2B)。对于风险规避的投资者而言,只会选择最小方差点上方的资产组合,我们称这部分资产组合为全部资产组合的效率边界(EfficientFrontier)。,11SB三、一个无风险资产与两个风险资产的组合假设两个资产的投资权重分为w1和w2,无风险资产的投资权重为1-w1-w2。两个风险资产构成一个风险资产组合,三个资产构成的投资组合可行集等价于一个风险资产组合与一个无风险资产构成的可行集。随着w1和w2的变化,风险资产的期望收益和方差并不是确定的值,而是不断变化的。给定w1和w2的某一比例k,在期望收益-方差平面中就对应着一个风险资产组合,该组合与无风险资产的连线形成了一条资本配置线,这条资产配置线就是市场中存在三个资产时的投资组合可行集合。我们容易发现,在所有资本配置线中,斜率最高的资本配置线在相同标准水平下拥有最大的期望收益率,也即与风险资产组合效率边界相切的一条线,我们称之为最有资本配置线,相应的切点组合P0被称为最优风险资产组合。第二节最优资产组合选择上一节中我们确定了市场的投资可行集。投资者接下来就是确定在可行集中进行资产组合的选择。对投资者的个人特征和行为准则做几个假定:投资者都是风险规避的,即在收益相同的条件下,投资者会选择风险最低的投资组合。投资者在最有资产组合的选择中只关心资产的均值、方差以及协方差。最有资产组合就是使投...