《理论力学》期中复习资料ACBD2/l2/l2/lF求下图中铰A的约束反力和CD杆受到的力。例题例题11解:1、选择ACB为研究对象,画出受力分析图ACB2/l2/lFFAxFAyFC为什么?CDFDF'C二力杆不作为研究对象列平衡方程ACBD2/l2/l2/lFxy0xF045cosCAxFF0yF045sinFFFCAy0CM022lFlFAyFFFFFFCAxAy222求下图中铰A的约束反力和CD杆受到的力。例题例题44解:2、建立平衡方程AF22)()(AyAxFF5F“-”号表示实际的力的方向和受力分析图上力的方向相反。ACB2/l2/lFFAxFAyFCACBD2/l2/l2/lF1、选择ACB作为研究对象,画出受力分析图ACB2/l2/lFFC45OFA解法2FFCFA45a2、画出平衡的力三角形45sinAFa90sinCFa45sinFFFFA545sin45sinaFFFC2245sin90sinaa例题2:横梁AB长l,A端用铰链杆支撑,B端为铰支座。梁上受到一力偶的作用,其力偶矩为M,如图所示。不计梁和支杆的自重,求A和B端的约束力。ABDM45llABMFBFA选梁AB为研究对象。lMlMFFBA245cos解得[解]045coslFMA,0M列平衡方程:AD是二力杆,A端的约束力必沿AD杆。力偶只能与力偶平衡,因此A与B端的约束力FA和FB构成一力偶,故有:FA=FB解:结点法先取整体为研究对象,受力如图所示。由平衡方程如图平面桁架,求各杆内力。已知铅垂力FC=4kN,水平力FE=2kN。aaaaaaaaFFCCAACCDDBBEEFFFFEE0AxEFF0x,0BAyCFFF0,y30CEBFaFaFa0,AMFAx=-2kNFAy=2kNFB=2kNaaaaaaaaFFCCAABBDDCCEEFFFFEEFFAyAyFFBBFFAxAx联立求解得例题3取结点A,受力分析如图。由平衡方程解得22kN,NAFF4kNNACFFAxFAyAFNACFNAFFNFEFNFAFNFCFF解得2kN,NFEF2kNNFCFcos450AxNACNAFFFF0,xcos450AyNAFFF0,y0,xcos450NFENFAFF0,ycos450NFCNFAFF取结点F,受力分析如图。由平衡方程aaaaaaaaPPCCAABBDDCCEEFFFFEEFFAyAyFFBBFFAxAxFAx=-2kNFAy=2kNFB=2kNFNCFFNCAFCCCFNCDFNCEcos450NCANCDNCEFFF0,xcos450CNCFNCEFFF0,y取结点C,受力分析如图。由平衡方程解得22kN,NCEF2kNNCDFaaaaaaaaFFCCAABBDDCCEEFFFFEEFFAyAyFFBBFFAxAxFAx=-2kNFAy=2kNFB=2kNFNDEFNDCDDFNDB0NDBNDCFF0,x0NDEF0,y解得3kN,NDBF0NDEF取结点D,受力分析如图。由平衡方程aaaaaaaaFFCCAABBDDCCEEFFFFEEFFAyAyFFBBFFAxAxFAx=-2kNFAy=2kNFB=2kNFBBBFNBDFNBE22kNNBDF22kNNBEF解得cos450NBDNBEFF0,x0,ycos450BNBEFF取结点B,受力分析如图。由平衡方程aaaaaaaaFFCCAABBDDCCEEFFFFEEFFAyAyFFBBFFAxAxFAx=-2kNFAy=2kNFB=2kN如图平面桁架,求FE,CE,CD杆内力。已知铅垂力FC=4kN,水平力FE=2kN。截面法解:先取整体为研究对象,受力如图所示。由平衡方程aaaaaaaaFFCCAACCDDBBEEFFFFEEaaaaaaaaFFCCAABBDDCCEEFFFFEEFFAyAyFFBBFFAxAx0AxEFF0x,0BAyCFFF0,y30CEBFaFaFa0,AMFAx=-2kNFAy=2kNFB=2kN联立求解得由平衡方程作一截面m-m将三杆截断,取左部分为分离体,受力分析如图。联立求解得22kN,NCEF2kN,NCDF2kNNFEFcos450NCDAxNFENCEFFFFcos450AyCNCEFFF0NFEAyFaFa0,x0,y0,CMFFNNFEFEFFNNCDCDaaFFCCAACCFFFFAAFFAADDEEFFNNCCEEmmaaaaaaaaFFCCAABBDDCCEEFFFFEEFFAyAyFFBBFFAxAxmmxyzABCDE3030G例4均质长方形板ABCD重G=200N,用球形铰链A和碟形铰链B固定在墙上,并用绳EC维持在水平位置,求绳的拉力和支座的反力。xyzABCDE3030GAXAYAZTBXBZ030sin:0)(21ABGABZABTFmBx030sin:0)(21ADTADGFmy0:0)(ABXFmBz解:以板为研究对象,受力如图,建立如图所示的坐标。xyzABCDE3030GAXAYAZTBXBZ030sin30cos:0TXXXBA030cos:02TYYA030sin:0GTZZZBA解之得:0BBZXNT200NXA6.86NYA150NZA100如图所示,计算均质组合体的重心位置的坐标...