向量的数量积(2)一、教学目标:①向量的数量积运算②利用向量的数量积运算判定垂直、求模、求角二、教学重点:①向量的数量积运算②利用向量的数量积运算判定垂直、求模、求角三、教学方法:练习法,纠错法,归纳法四、教学过程:考点一:向量的数量积运算(一)、知识要点:1)定义:①设<>=,则(的范围为)②设,则。注:①不能写成,或②的结果为一个数值。2)投影:在方向上的投影为。3)向量数量积运算律:①②③注:①没有结合律二)例题讲练1、下列命题:①若,则,中至少一个为②若且,则③④中正确有个数为()A.0个B.1个C.2个D.3个2、已知中,A,B,C所对的边为a,b,c,且a=3,b=1,C=30°,则=。3、若,,满足,且,则=。4、已知,且与的夹角为,则在上的投影为。考点二:向量数量积性质应用一)、知识要点:①(用于判定垂直问题)②(用于求模运算问题)1③(用于求角运算问题)二)例题讲练1、已知,,且与的夹角为,,,求当m为何值时2、已知,,,则。3、已知和是非零向量,且==,求与的夹角4、已知,,且和不共线,求使与的夹角是锐角时的取值范围巩固练习1、已知和是两个单位向量,夹角为,则()等于()A.-8B.C.D.82、已知和是两个单位向量,夹角为,则下面向量中与垂直的是()A.B.C.D.3、在中,设,,,若,则()直角三角形锐角三角形钝角三角形无法判定4、已知和是非零向量,且与垂直,与垂直,求与的夹角。5、已知、、是非零的单位向量,且++=,求证:为正三角形。3.1.5空间向量运算的坐标表示课题向量的坐标教学目的要求1.理解空间向量与有序数组之间的1-1对应关系2.掌握投影定理、分向量及方向余弦的坐标表示2主要内容与时间分配1.投影与投影定理25分钟2.分向量与向量的坐标30分钟3.模与方向余弦的坐标表示35分钟重点难点1.投影定理2.分向量3.方向余弦的坐标表示教学方法和手段启发式教学法,使用电子教案一、向量在轴上的投影1.几个概念(1)轴上有向线段的值:设有一轴,是轴上的有向线段,如果数满足,且当与轴同向时是正的,当与轴反向时是负的,那么数叫做轴上有向线段的值,记做AB,即。设e是与轴同方向的单位向量,则(2)设A、B、C是u轴上任意三点,不论三点的相互位置如何,总有(3)两向量夹角的概念:设有两个非零向量和b,任取空间一点O,作,,规定不超过的称为向量和b的夹角,记为(4)空间一点A在轴上的投影:通过点A作轴的垂直平面,该平面与轴的交点叫做点A在轴上的投影。(5)向量在轴上的投影:设已知向量的起点A和终点B在轴上的投影分别为点和,那么轴上的有向线段的值叫做向量在轴上的投影,记做。2.投影定理性质1:向量在轴上的投影等于向量的模乘以轴与向量的夹角的余弦:性质2:两个向量的和在轴上的投影等于两个向量在该轴上的投影的和,即性质3:向量与数的乘法在轴上的投影等于向量在轴上的投影与数的乘法。即二、向量在坐标系上的分向量与向量的坐标31.向量在坐标系上的分向量与向量的坐标通过坐标法,使平面上或空间的点与有序数组之间建立了一一对应关系,同样地,为了沟通数与向量的研究,需要建立向量与有序数之间的对应关系。设a=是以为起点、为终点的向量,i、j、k分别表示图7-5沿x,y,z轴正向的单位向量,并称它们为这一坐标系的基本单位向量,由图7-5,并应用向量的加法规则知:i+j+k或a=axi+ayj+azk上式称为向量a按基本单位向量的分解式。有序数组ax、ay、az与向量a一一对应,向量a在三条坐标轴上的投影ax、ay、az就叫做向量a的坐标,并记为a={ax,ay,az}。上式叫做向量a的坐标表示式。于是,起点为终点为的向量可以表示为特别地,点对于原点O的向径注意:向量在坐标轴上的分向量与向量在坐标轴上的投影有本质区别。向量a在坐标轴上的投影是三个数ax、ay、az,向量a在坐标轴上的分向量是三个向量axi、ayj、azk.2.向量运算的坐标表示设,即,则(1)加法:◆减法:◆乘数:4◆或◆平行:若a≠0时,向量相当于,即也相当于向量的对应坐标成比例即三、向量的模与方向余弦的坐标表示式设,可以用它与三个坐标轴的夹角(均大于等于0,小于等于)来表示它的方向,称为非零向量a的方向角,见图7-6,其余弦表示形式称...