电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

多边形的内角和第课时VIP免费

多边形的内角和第课时_第1页
1/24
多边形的内角和第课时_第2页
2/24
多边形的内角和第课时_第3页
3/24
八年级上册11.3多边形及其内角和(第1课时)课件说明•本课是在学生已经学习了三角形的有关概念和性质的基础上,利用学习三角形的经验方法进一步研究多边形的有关概念和性质.•学习目标:1.了解多边形的有关概念,感悟类比方法的价值.2.探索并证明多边形内角和公式,体会化归思想和从具体到抽象的研究问题方法.3.运用多边形内角和公式解决简单问题.•学习重点:多边形内角和公式的探索与证明过程.课件说明创设情境,导入新知问题你能从图中想象出几个由一些线段围成的图形吗?www.yousee123.com三角形长方形六边形四边形八边形在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形。多边形的定义你能仿照三角形的定义给出多边形的定义吗?创设情境,导入新知如图,从五边形ABCDE的顶点A出发共有几条对角线?它们将五边形分成几个三角形?六边形呢?ABCDE什么叫做多边形的对角线?www.yousee123.com•你能说出这两幅图形的异同点吗?(1)(2)•如图(1)这样,画出多边形的任何一条边所在的直线,整个四边形都在这条直线的同一侧,那么这个多边形就是凸多边形。本节我们只讨论凸多边形。创设情境,导入新知创设情境,导入新知想一想正方形的边、角有什么特点?各个角都相等,各条边都相等的多边形叫做正多边形.回忆长方形、正方形的内角和等于______.360°创设情境,导入新知思考任意一个四边形的内角和是否也等于360°呢?动手操作,探究新知探究你能利用三角形内角和定理证明你的结论吗?证明:连接AC,∠BAD+∠B+∠BCD+∠D=(∠BAC+∠BCA+∠B)+(∠DAC+∠DCA+∠D),=180°+180°=360°.ABCD动手操作,探究新知探究你能利用三角形内角和定理证明你的结论吗?从四边形的一个顶点出发,可以作_____条对角线,它们将四边形分为个三角形,四边形的内角和等于180°×____=°.122360ABCDABCDE动手操作,探究新知探究类比前面的过程,你能探索五边形的内角和吗?六边形呢?如图,从五边形的一个顶点出发,可以作条对角线,它们将五边形分为____个三角形,五边形的内角和等于180°×=°.233540动手操作,探究新知如图,从六边形的一个顶点出发,可以作_____条对角线,它们将六边形分为_____个三角形,六边形的内角和等于180°×____=_______°.344720CABDEF从n边形的一个顶点出发,可以作(n-3)条对角线,它们将n边形分为(n-2)个三角形,这(n-2)个三角形的内角和就是n边形的内角和,所以,n边形的内角和等于(n-2)×180°.归纳总结,获得新知思考你能从四边形、五边形、六边形的内角和的研究过程获得启发,发现多边形的内角和与边数的关系吗?能证明你发现的结论吗?n边形六边形五边形四边形三角形多边形内角和分割出三角形的个数从多边形的一个顶点引出的对角线条数图形边数············归纳总结,梳理新知03-3=4-3=5-3=6-3=n-31233-2=14-2=25-2=36-2=4n-2(n-2)·180º180º360º540º720º··················想一想AnA5A1A4A2A3AnA5A1A4A2A3PP(1)(2)你还有其他的方法将多边形分割成三角形吗?ABCDABCDEABCDEF该图中n边形共有n个三角形,故所有三角形内角和为n×180°,但每个图中都有一个以红圈圈住的点,它是一个圆周角360°,因此n边形的内角和为n×180°-360°=(n-2)×180°多了什么?如何处理?多了什么?如何处理?ABCDABCDEABCDEF这种分割方式,将多边形分成n-1个三角形,故所有三角形的内角和为(n-1)×180°,边上一点周围所形成的平角不是多边形的内角,因此n边形的内角和为(n-1)×180°-180°=(n-2)×180°14408动脑思考,例题解析例1填空:(1)十边形的内角和为度.(2)已知一个多边形的内角和为1080°,则它的边数为______.解:如图,四边形ABCD中,∠A+∠C=180°. ∠A+∠B+∠C+∠D=(4-2)×180°=360°,∴∠B+∠D=360°-(∠A+∠C)=360°-180°=180°.动脑思考,例题解析例2如果一个四边形的一组对角互补,那么另一组对角有什么关系?ABCD如果四边形的一组对角互补,那么另一组对角也互补.思考:有一六边形,截去一三角形,内角和会发生怎样变化?请画图说明。内角和减少18...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

多边形的内角和第课时

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部