限时集训(二十三)解三角形应用举例(限时:60分钟满分:110分)一、填空题(本大题共10小题,每小题5分,共50分)1.某人向正东方向走xkm后,向右转150°,然后朝新方向走3km,结果他离出发点恰好是km,那么x的值为________.2.(2013·新沂检测)如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为________km.3.一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是________m.4.(2012·永州模拟)张晓华同学骑电动自行车以24km/h的速度沿着正北方向的公路行驶,在点A处望见电视塔S在电动车的北偏东30°方向上,15min后到点B处望见电视塔在电动车的北偏东75°方向上,则电动车在点B时与电视塔S的距离是________km.5.某海岛周围38海里有暗礁,一轮船由西向东航行,初测此岛在北偏东60°方向,航行30海里后测得此岛在东北方向,若不改变航向,则此船________触礁的危险(填“有”或“无”).6.如图,在湖面上高为10m处测得天空中一朵云的仰角为30°,测得湖中之影的俯角为45°,则云距湖面的高度为________m(精确到0.1m).7.2012年10月29日,超级风暴“桑迪”袭击美国东部,如图,在灾区的搜救现场,一条搜救狗从A处沿正北方向行进xm到达B处发现一个生命迹象,然后向右转105°,行进10m到达C处发现另一生命迹象,这时它向右转135°后继续前行回到出发点,那么x=________m.8.(2013·镇江期中)某路边一树干被台风吹断后,折成与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20m,则折断点与树干底部的距离是________m.9.已知扇形的圆心角为2α(定值),半径为R(定值),分别按图一、二作扇形的内接矩形,若按图一作出的矩形面积的最大值为R2tanα,则按图二作出的矩形面积的最大值为________.10.如图,已知A、B、C是一条直路上的三点,AB与BC各等于1km,从三点分别遥望塔M,在A处看见塔在北偏东45°方向,在B处看见塔在正东方向,在点C处看见塔在南偏东60°方向,则塔到直路ABC的最短距离为________km.二、解答题(本大题共4小题,共60分)11.(满分14分)如图,某市拟在长为8km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asinωx(A>0,ω>0),x∈[0,4]的图象,且图象的最高点为S(3,2);赛道的后一部分为折线段MNP.为保证参赛运动员的安全,限定∠MNP=120°.(1)求A,ω的值和M,P两点间的距离;(2)应如何设计,才能使折线段赛道MNP最长?12.(满分14分)如图,为了解某海域海底构造,在海平面内一条直线上的A、B、C三点进行测量.已知AB=50m,BC=120m,于A处测得水深AD=80m,于B处测得水深BE=200m,于C处测得水深CF=110m,求∠DEF的余弦值.13.(满分16分)为扑灭某着火点,现场安排了两支水枪,如图,D是着火点,A、B分别是水枪位置,已知AB=15m,在A处看到着火点的仰角为60°,∠ABC=30°,∠BAC=105°,求两支水枪的喷射距离至少是多少?14.(满分16分)(2012·南京四校联考)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sinα的值.答案[限时集训(二十三)]1.解析:如图所示,设此人从A出发,则AB=x,BC=3,AC=,∠ABC=30°,由余弦定理得()2=x2+32-2x·3·cos30°,整理得x2-3x+6=0,解得x=或2.答案:或22.解析:利用余弦定理解△ABC.易知∠ACB=120°,在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BC·cos120°=2a2-2a2×=3a2,故AB=a.答案:a3.解析:设水柱高度是hm,水柱底端为C,则在△ABC中,A=60°,AC=h,AB=100,BC=h,根据余弦定理得,(h)2=h2+1002-2·h·100·cos60°,即h2+50h-5000=0,即(h-50)(h+100)=0,即h=50,故水柱的高度是50m.答...