1二项分布与正态分布【考点梳理】1.条件概率条件概率的定义条件概率的性质设A,B为两个事件,且P(A)>0,称P(B|A)=P(AB)P(A)为在事件A发生的条件下,事件B发生的条件概率(1)0≤P(B|A)≤1;(2)如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A)2.事件的相互独立性(1)定义:设A,B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立.(2)性质:若事件A与B相互独立,则A与B,A与B,A与B也都相互独立,P(B|A)=P(B),P(A|B)=P(A).3.独立重复试验与二项分布(1)独立重复试验在相同条件下重复做的n次试验称为n次独立重复试验,其中Ai(i=1,2,⋯,n)是第i次试验结果,则P(A1A2A3⋯An)=P(A1)P(A2)P(A3)⋯P(An).(2)二项分布在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=Cknpk(1-p)n-k(k=0,1,2,⋯,n),此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.4.正态分布(1)正态分布的定义如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=abφμ,σ(x)dx,则称随机变量X服从正态分布,记为X~N(μ,σ2).其中φμ,σ(x)=22212xe(σ>0).(2)正态曲线的性质①曲线位于x轴上方,与x轴不相交,与x轴之间的面积为1;2②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值1σ2π;④当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.(3)正态总体在三个特殊区间内取值的概率值①P(μ-σ