1静止氖原子的谱线中心波长为632.8纳米,设氖原子分别以0.1C、O.4C、O.8C的速度向着观察者运动,问其表观中心波长分别变为多少?解答:根据公式(激光原理P136)由以上两个式子联立可得:代入不同速度,分别得到表观中心波长为:,,解答完毕(验证过)2设有一台麦克尔逊干涉仪,其光源波长为,试用多普勒原理证明,当可动反射镜移动距离L时,接收屏上的干涉光强周期性的变化次。证明:对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度移动,存在多普勒效应。在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。以上是分析内容,具体解答如下:无多普勒效应的光场:产生多普勒效应光场:在产生多普勒效应的光路中,光从半透经到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上)第一次多普勒效应:第二次多普勒效应:在观察者处:观察者感受到的光强:显然,光强是以频率为频率周期变化的。因此,在移动的范围内,光强变化的次数为:证明完毕。(验证过)3在激光出现以前,Kr86低气压放电灯是最好的单色光源。如果忽略自然加宽和碰撞加宽,试估计在77K温度下它的605.7纳米谱线的相干长度是多少?并与一个单色性Δλ/λ=10-8的He-Ne激光器比较。解:根据相干长度的定义可知,。其中分母中的是谱线加宽项。从气体物质的加宽类型看,因为忽略自然和碰撞加宽,所以加宽因素只剩下多普勒加宽的影响。根据P138页的公式4.3.26可知,多普勒加宽:因此,相干长度为:根据题中给出的氦氖激光器单色性及氦氖激光器的波长632.8纳米,可根据下述公式得到氦氖激光器的相干长度:可见,即使以前最好的单色光源,与现在的激光光源相比,相干长度相差2个数量级。说明激光的相干性很好。(验证过)4估算CO2气体在300K下的多普勒线宽ΔνD,若碰撞线宽系数α=49MHZ/Pa,讨论在什么气压范围内从非均匀加宽过渡到均匀加宽。解:根据P138页的公式4.3.26可知,多普勒加宽:因为均匀加宽过渡到非均匀加宽,就是的过程,据此得到:,得出结论:气压P为1.08×103Pa时,是非均匀加宽与均匀加宽的过渡阈值,.当气压远远大于1.08×103Pa的情况下,加宽主要表现为均匀加宽。(验证过)5氦氖激光器有下列三种跃迁,即3S2-2P4的632.8纳米,2S2-2P4的1.1523微米和3S2-3P4的3.39微米的跃迁。求400K时他们的多普勒线宽,并对结果进行分析。解:根据P138页的公式4.3.26,可分别求出不同跃迁的谱线加宽情况。3S2-2P4的632.8纳米的多普勒加宽:2S2-2P4的1.1523微米的多普勒加宽:3S2-3P4的3.39微米的多普勒加宽:由以上各个跃迁的多普勒线宽可见,按照结题结果顺序,线宽是顺次减少,由于题中线宽是用频率进行描述,因此频率线宽越大,则单色性越好。(验证过)6考虑二能级工作系统,若E2能级的自发辐射寿命为τS,无辐射跃迁寿命为τnr。假设t=0时激光上能级E2的粒子数密度为n2(0),工作物质的体积为V,发射频率为ν,求:(1)自发辐射功率随时间的变化规律。(2)E2能级的原子在其衰减过程中发出的自发辐射光子数。(3)自发辐射光子数与初始时刻E2能级上的粒子数之比η2。解:(1)根据P11相关内容,考虑到E2的能级寿命不仅仅是自发辐射寿命,还包括无辐射跃迁寿命,因此,E2能级的粒子数变化规律修正为:,其中的τ与τS、τnr的关系为,为E2能级的寿命。在时刻t,E2能级由于自发和无辐射跃迁而到达下能级的总粒子数为:由于自发辐射跃迁而跃迁到激光下能级的粒子数为,因此由于自发辐射而发射的功率随时间的变化规律可以写成如下形式:(2)由上式可知,在t-t+dt时间内,E2能级自发辐射的光子数为:则在0-∞的时间内,E2能级自发辐射的光子总数为:(3)自发辐射光子数与初始时刻能级上的粒子数之比为:此题有待确认7根据激光原理4.4节所列红宝石的跃迁几率数据,估算抽运几率等于多少时红宝石对波长694.3纳米的光透是明的(对红宝石,激光上、下能级的统计权重为,...