一元一次方程的应用行程问题杜玉萍用一元一次方程分析和解决实际问题的基本过程如下:实际问题数学问题已知量,未知量,等量关系一元一次方程方程的解解的合理性实际问题答案抽象分析列出求出验证合理1、某中学组织团员到校外参加义务植树活动,一部分团员骑自行车先走,速度为9km/h,40分钟后其余团员乘汽车出发,速度为45km/h,结果他们同时到达目的地,则目的地距学校多少km?一、明确行程问题中三个量的关系三个基本量关系是:速度×时间=路程x9x45x40.94560xx-=解:设目的地距学校km,则骑自行车所用h,乘汽车所用时间为h.由题意得解得答:目的地距学校7.5km.时间为x=7.52、一通讯员骑自行车把信送往某地.如果每小时行15km,就比预定时间少用24分钟;如果每小时行12km,就比预定时间多用15分钟,那么预定时间是多少小时?他去某地的路程是多少km?zxxk24151512.6060xx(-)=(+)3.x=解:设预定时间为x小时解得根据题意,得所以2415(3)39.60-=答:预定时间为3h,路程为39km.引例:从甲地到乙地,水路比公路近40千米,上午十时,一艘轮船从甲地驶往乙地,下午1时一辆汽车从甲地驶往乙地,结果同时到达终点。已知轮船的速度是每小时24千米,汽车的速度是每小时40千米,求甲、乙两地水路、公路的长,以及汽车和轮船行驶的时间?三个基本量关系是:速度×时间=路程解:设水路长为x千米,则公路长为(x+40)千米等量关系:船行时间-车行时间=3小时答:水路长240千米,公路长为280千米,车行时间为7小时,船行时间为10小时依题意得:14032440xxx+40=280,2802407,104024x=240解2设汽车行驶时间为x小时,则轮船行驶时间为(x+3)小时。等量关系:水路-公路=40依题意得:40x-24(x+3)=40x=77+3=1040×7=28024×10=240答:汽车行驶时间为7小时,船行时间为10小时,公路长为280米,水路长240米。引例:从甲地到乙地,水路比公路近40千米,上午十时,一艘轮船从甲地驶往乙地,下午1时一辆汽车从甲地驶往乙地,结果同时到达终点。已知轮船的速度是每小时24千米,汽车的速度是每小时40千米,求甲、乙两地水路、公路的长,以及汽车和轮船行驶的时间?一、相遇问题的基本题型1、同时出发(两段)二、相遇问题的等量关系总乙甲sss总乙甲先ssss2、不同时出发(三段)一、追及问题的基本题型1、不同地点同时出发二、追及问题的等量关系2、同地点不同时出发1、追及时快者行驶的路程-慢者行驶的路程=相距的路程2、追及时快者行驶的路程=慢者行驶的路程或慢者所用时间=快者所用时间+多用时间练习:1、两地相距28公里,小明以15公里/小时的速度。小亮以30公里/小时的速度,分别骑自行车和开汽车从同一地前往另一地,小明先出发1小时,小亮几小时后才能追上小明?解:设小亮开车x小时后才能追上小明,则小亮所行路程为30x公里,小明所行路程为15(x+1)等量关系:小亮所走路程=小明所走路程依题意得:30x=15(x+1)x=1检验:两地相距28公里,在两地之间,小亮追不上小明则小明共走了2小时,共走了2×15=30公里答:在两地之间,小亮追不上小明2、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么经过2分钟他们两人就要相遇。如果2人从同一地点同向而行,那么经过20分钟两人相遇。如果甲的速度比乙的速度快,求两人散步的速度?等量关系:甲行的路程-乙行的路程=环形周长答:甲速为每分钟110米,乙速为每分钟90米。注:同时同向出发:快车走的路程-环行跑道周长=慢车走的路程(第一次相遇)同时反向出发:甲走的路程+乙走的路程=环行周长(第一次相遇)解:设甲的速度为每分钟x米,则乙的速度为每分钟米。甲20分钟走了20x米,乙20分钟走了米40022x20(4002)2x依题意得:20(4002)204002xxx=110例某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达到该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问是否能在规定时间内完成任务?等量关系:小王所行路程=连队所行路程答:小王能在指定时间内完成任务。解:设小王追上连队需要x小时,则小...