电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

14.3因式分解--平方差公式VIP免费

14.3因式分解--平方差公式_第1页
1/2
14.3因式分解--平方差公式_第2页
2/2
14.3因式分解第2课时14.3.2平方差公式【教学目标】知识与技能用平方差公式进行因式分解,发展学生推理能力.会应过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.【教学重难点】重点:利用平方差公式分解因式.难点:领会因式分解的解题步骤和分解因式的彻底性.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.【教学过程】一、观察探讨,体验新知【问题牵引】问题1:你能叙述多项式因式分解的定义吗?1、多项式的因式分解其实是整式乘法的逆用,也就是把一个多项式化成了几个整式的积的形式.问题2:运用提公因式法分解因式的步骤是什么?2.提公因式法的第一步是观察多项式各项是否有公因式,如果没有公因式,就不能使用提公因式法对该多项式进行因式分解.问题3:你能将a2-b2分解因式吗?3、要将a2-b2进行因式分解,可以发现它没有公因式,不能用提公因式法分解因式,但我们还可以发现这个多项式是两个数的平方差形式,所以用平方差公式可以写成如下形式:a2-b2=(a+b)(a-b).多项式的乘法公式的逆向应用,就是多项式的因式分解公式,如果被分解的多项式符合公式的条件,就可以直接写出因式分解的结果,这种分解因式的方法称为运用公式法.今天我们就来学习利用平方差公式分解因式请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).【学生活动】动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25;2.分解因式16m2-9n2.【学生活动】从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学例1:把下列各式分解因式:(投影显示或板书)(1)4x2-9(2)(x+p)2-(x+q)2解:【分析】在观察中发现这两题均满足平方差公式的特征,可以使用平方差公式因式分解.【教师活动】启发学生从平方差公式的角度进行因式分解,请2位学生上讲台板演.【学生活动】分四人小组,合作探究.例2:分解因式:(1)x4-y4;(2)a3b–ab.分析:(1)x4-y4可以写成(x2)2-(y2)2的形式,这样就可以利用平方差公式进行因式分解了.(2)a3b-ab有公因式ab,应先提出公因式,再进一步分解.解:(1)x4-y4=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y)(2)a3b-ab=ab(a2-1)=ab(a+1)(a-1).三、随堂练习,巩固深化课本117页练习第1、2题.【探研时空】(小黑板出示)1.求证:当n是正整数时,n3-n的值一定是6的倍数.2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能1.如果多项式各项含有公因式,则第一步是提出这个公因式.2.如果多项式各项没有公因式,则第一步考虑用公式分解因式.3.第一步分解因式以后,所含的多项式还可以继续分解,则需要进一步分解因式.直到每个多项式因式都不能分解为止.五、布置作业,专题突破课本119页习题14.3第2、4(2)题.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

14.3因式分解--平方差公式

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部