第八章数值积分/*NumericalIntegration*/近似计算badxxfI)(§8.1Newton-Cotes公式思路利用插值多项式则积分易算。)()(xfxPn要求:积分易算。8.1.1梯形公式用直线代替y=f(x):f(x)abf(b)()()()()[()()]22baIfxdxfafbbabafafbf(a)101100110()()()()()()()()fxfxfxpxRxfxxxRxxx用一次插值代替f(x):10101100100010210000102100001010100101010()()()[()()]()()[()()()]|2()()()()()|()|2()[()()]()()()2[()()]()bxaxxxxxxxfxfxIfxdxfxxxdxxxfxfxfxxxxxxxfxfxfxxxxxxxfxfxxxfxxxfxfxxx[()()]22bafafb梯形公式?!误差:101100(1)110(2)(2)1010(2)(2)0101(2)33(2)10()()()()(1)!()()()()()2!2!()()()()()()22()1[()]()2612nnbbxiaaibxxxiaxixxxxxfRfRxdxxxdxnffxxdxxxxxdxffxxxxdxxxxxdxfhxxf113(2)1000103(2)()()()()()()()()12[()()]()212bbbaaaIfxdxpxdxRxdxfxfxhfxxxfxxhhfafbf利用积分中值定律(2)(2)(2)()0()0()0fff时偏大,时偏小,时就是直线。8.1.2Simpson公式利用二次插值(用二次Ln),等分[a,b]区间:(1)000()()()()()(1)!nnnnjxiiijiiijjxxffxyxxxxn(3)22000(3)12000110111200()()[()]()3!()()[]()]()3!()()()()()()nbjxiiaijiiijjnbbjxiiaaijiiijjbbjjjaajijijijjjjjjxxfIyxxdxxxxxfydxxxdxxxxxxxxxydxydxxxxxxx120(3)0()()]3!banbxiaiydxfxxdx0()niiilxy1232()IIIIRf(3)222000()()()()3!jxiiijiiijjxxfyxxxx10213255(4)(4)21()34()31()3()()()()902880IhfxIhfxIhfxhbaRfff12325(4)012()()[()4()()]()390baIfxdxIIIRfhhfxfxfxf解得:Simpson带余项的公式:请自己推导(P167-168)()2bah定义若求积公式对任意不高于n次的代数多项数成立,而对n+1次代数多项式不能精确积分,就称此求积公式具有n次代数精度。。Simpson公式的代数精度为梯形公式的代数精度为31下一步:将二次插值多项式推广到n阶,就是Newton-Cotes公式§1.3Newton-Cotes公式在[a,b]上取ax0