电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

数学思维的变通性VIP免费

数学思维的变通性_第1页
1/6
数学思维的变通性_第2页
2/6
数学思维的变通性_第3页
3/6
数学思维的变通性吉小卫一、概念数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练:(1)善于观察(2)善于联想(3)善于将问题进行转化(1)观察能力的训练任何一道数学题,都包含一定的数学条件和关系。要想解决它,就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。虽然观察看起来是一种表面现象,但它是认识事物内部规律的基础。所以,必须重视观察能力的训练,使学生不但能用常规方法解题,而且能根据题目的具体特征,采用特殊方法来解题。例1已知都是实数,求证思路分析从题目的外表形式观察到,要证的结论的右端与平面上两点间的距离公式很相似,而左端可看作是点到原点的距离公式。根据其特点,可采用下面巧妙而简捷的证法,这正是思维变通的体现。证明不妨设如图1-2-1所示,则在中,由三角形三边之间的关系知:当且仅当O在AB上时,等号成立。因此,例2已知,试求的最大值。解由得又当时,有最大值,最大值为1xyO),(baA),(dcB图1-2-1思路分析要求的最大值,由已知条件很快将变为一元二次函数然后求极值点的值,联系到,这一条件,既快又准地求出最大值。上述解法观察到了隐蔽条件,体现了思维的变通性。例3已知二次函数满足关系,试比较与的大小。思路分析由已知条件可知,在与左右等距离的点的函数值相等,说明该函数的图像关于直线对称,又由已知条件知它的开口向上,所以,可根据该函数的大致图像简捷地解出此题。解(如图1-2-2)由,知是以直线为对称轴,开口向上的抛物线它与距离越近的点,函数值越小。(2)联想能力的训练联想是问题转化的桥梁。稍具难度的问题和基础知识的联系,都是不明显的、间接的、复杂的。因此,解题的方法怎样、速度如何,取决于能否由观察到的特征,灵活运用有关知识,做出相应的联想,将问题打开缺口,不断深入。例如,解方程组.这个方程指明两个数的和为,这两个数的积为。由此联想到韦达定理,、是一元二次方程的两个根,所以或.可见,联想可使问题变得简单。例4在中,若为钝角,则的值(A)等于1(B)小于1(C)大于1(D)不能确定思路分析此题是在中确定三角函数的值。因此,联想到三角函数正切的两角和公式可得下面解法。解为钝角,.在中且故应选择(B)例5若思路分析此题一般是通过因式分解来证。但是,如果注意观察已知条件的特点,不难发现它与一元二次方程的判别式相似。于是,我们联想到借助一元二次方程的知识来证题。2xyO2图1-2-2证明当时,等式可看作是关于的一元二次方程有等根的条件,在进一步观察这个方程,它的两个相等实根是1,根据韦达定理就有:即若,由已知条件易得即,显然也有.例6已知均为正实数,满足关系式,又为不小于的自然数,求证:思路分析由条件联想到勾股定理,可构成直角三角形的三边,进一步联想到三角函数的定义可得如下证法。证明设所对的角分别为、、则是直角,为锐角,于是且当时,有于是有即从而就有(3)问题转化的训练数学家G.波利亚在《怎样解题》中说过:数学解题是命题的连续变换。可见,解题过程是通过问题的转化才能完成的。转化是解数学题的一种十分重要的思维方法。那么怎样转化呢?概括地讲,就是把复杂问题转化成简单问题,把抽象问题转化成具体问题,把未知问题转化成已知问题。在解题时,观察具体特征,联想有关问题之后,就要寻求转化关系。例如,已知,,求证、、三数中必有两个互为相反数。恰当的转化使问题变得熟悉、简单。要证的结论,可以转化为:思维变通性的对立面是思维的保守性,即思维定势。思维定势是指一个人用同一种思维方法解决若干问题以后,往往会用同样的思维方法解决以后的问题。它表现就是记类型、记方法、套公式,使思维受到限制,它是提高思维变通性的极大的障碍,必须加以克服。综上所述,善于观察、善于联想、善于进行问题转化,是数学思维变通性的具体体现。要想提高思维变通性,必须作相应的思维训练...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

数学思维的变通性

您可能关注的文档

中小学资料+ 关注
实名认证
内容提供者

精美课件,值得下载

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部