期末考试文科范围:复数,算法,概率,统计,集合,逻辑,函数,不等式,推理证明推理与证明(复习课)1.以数表、数阵、图形为背景与数列、周期性等知识相结合考查归纳推理和类比推理,多以小题形式出现.2.直接证明和间接证明的考查主要作为证明和推理数学命题的方法,常与函数、数列及不等式等综合命题.考情解读演绎推理是证明数学结论、建立数学体系的重要思维过程.数学结论、证明思路的发现,主要靠合情推理.复习推理合情推理(或然性推理)演绎推理(必然性推理)归纳(特殊到一般)类比(特殊到特殊)三段论(一般到特殊)主干知识梳理1.合情推理(1)归纳推理①归纳推理是由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理.②归纳推理的思维过程如下:实验、观察概括、推广猜测一般性结论→→(2)类比推理①类比推理是由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.②类比推理的思维过程如下:观察、比较联想、类推猜测新的结论→→2.演绎推理(1)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.(2)合情推理与演绎推理的区别归纳和类比是常用的合情推理,从推理形式上看,归纳是由部分到整体、个别到一般的推理;类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确.例1(1)有菱形纹的正六边形地面砖,按下图的规律拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是()题型一归纳推理思维启迪根据三个图案中的正六边形个数寻求规律;A.26B.31C.32D.36解析有菱形纹的正六边形个数如下表:图案123…个数61116…由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第六个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.故选B.答案B(2)两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗,已知火车上的座位的排法如图所示,则下列座位号码符合要求的应当是()A.48,49B.62,63C.75,76D.84,85思维启迪靠窗口的座位号码能被5整除或者被5除余1.解析由已知图形中座位的排列顺序,可得:被5除余1的数和能被5整除的座位号临窗,由于两旅客希望座位连在一起,且有一个靠窗,分析答案中的4组座位号,只有D符合条件.答案D归纳递推思想在解决问题时,从特殊情况入手,通过观察、分析、概括,猜想出一般性结论,然后予以证明,这一数学思想方法在解决探索性问题、存在性问题或与正整数有关的命题时有着广泛的应用.其思维模式是“观察——归纳——猜想——证明”,解题的关键在于正确的归纳猜想.思维升华变式训练1(1)四个小动物换座位,开始是鼠、猴、兔、猫分别坐1、2、3、4号位上(如图),第一次前后排动物互换座位,第二次左右列动物互换座位,…这样交替进行下去,那么第202次互换座位后,小兔坐在第______号座位上.A.1B.2C.3D.4解析考虑小兔所坐的座位号,第一次坐在1号位上,第二次坐在2号位上,第三次坐在4号位上,第四次坐在3号位上,第五次坐在1号位上,因此小兔的座位数更换次数以4为周期,因为202=50×4+2,因此第202次互换后,小兔所在的座位号与小兔第二次互换座位号所在的座位号相同,因此小兔坐在2号位上,故选B.答案B(2)已知f(n)=1+12+13+…+1n(n∈N*),经计算得f(4)>2,f(8)>52,f(16)>3,f(32)>72,则有______________________.解析由题意得f(22)>42,f(23)>52,f(24)>62,f(25)>72,所以当n≥2时,有f(2n)>n+22.故填f(2n)>n+22(n≥2,n∈N*).f(2n)>n+22(n≥2,n∈N*)题型二类比推理例2(1)在平面几何中有如下结论:若正三角形ABC的内切圆面积为S1,外接圆面积为S2,则S1S2=14.推广到空间几何可以得到类似结论:若正四面体ABCD的内切球体积为V1,外接球体积为V2,则V1V2=________.思维启迪平面几何中的面积可类比到空间几何中的体积;解析平面几...