矩形【学习目标】1.理解矩形的概念.2.掌握矩形的性质定理与判定定理.【要点梳理】要点一、矩形的定义有一个角是直角的平行四边形叫做矩形.要点诠释:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.要点二、矩形的性质矩形的性质包括四个方面:1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.要点诠释:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.要点三、矩形的判定矩形的判定有三种方法:1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.要点诠释:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.要点四、直角三角形斜边上的中线的性质直角三角形斜边上的中线等于斜边的一半.推论:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.要点诠释:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.【典型例题】类型一、矩形的性质1、如图所示,已知四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.求证:(1)∠PBA=∠PCQ=30°;(2)PA=PQ.【思路点拨】(1)矩形的四个内角都等于90°,利用条件△PBC和△QCD都是等边三角形,容易求得∠PBA和∠PCQ度数;(2)利用(1)的结论以及矩形的性质进一步证明△PAB≌△PQC(SAS),从而证得PA=PQ.【答案与解析】证明:(1) 四边形ABCD是矩形,∴∠ABC=∠BCD=90°. △PBC和△QCD是等边三角形,∴∠PBC=∠PCB=∠QCD=60°,∴∠PBA=∠ABC-∠PBC=30°,∠PCD=∠BCD-∠PCB=30°.∴∠PCQ=∠QCD-∠PCD=30°,故∠PBA=∠PCQ=30°(2) 四边形ABCD是矩形,∴AB=DC. △PBC和△QCD是等边三角形,∴PB=PC,QC=DC=AB. AB=QC,∠PBA=∠PCQ,PB=PC.∴△PAB≌△PQC,∴PA=PQ.【总结升华】利用矩形的性质,可以得到许多的结论,在解题时,针对问题列出有用的结论作论据即可.举一反三:【变式】如图所示,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B处,点A落在点A处.(1)求证:BEBF;(2)设AE=a,AB=b,BF=c,试猜想abc、、之间有何等量关系,并给予证明.【答案】证明:(1)由折叠可得BFEBFE. AD∥BC,∴BEFBFEBFE,∴BEBF,∴BEBF.(2)猜想222abc.理由:由题意,得AEAEa,ABABb.由(1)知BEBFc.在ABE△中, 90A°,AEa,ABb,BEc,∴222abc.2、如图所示,矩形ABCD中,AC、BD相交于O,AE平分∠BAD交BC于E,∠CAE=15°,求∠BOE的度数.【思路点拨】∠BOE在△BOE中,易知∠OBE=30°,直接求∠BOE有困难,转为考虑证BO=BE.由AE平分∠BAD可求∠BAE=45°得到AB=BE,进一步可得等边△AOB.有AB=OB.证得BO=BE.【答案与解析】解: 四边形ABCD是矩形,∴∠DAB=∠ABC=90°,AO=12AC,BO=12BD,AC=BD.∴AO=BO. AE平分∠BAD,∴∠BAE=45°.∴∠AEB=90°-45°=45°=∠BAE.∴BE=AB. ∠CAE=15°,∴∠BAO=60°.∴△ABO是等边三角形.∴BO=AB,∠ABO=60°.∴BE=BO,∠OBE=30°.∴∠BOE=18030752°°°.【总结升华】矩形被每条对角线分成两个直角三角形,被两条对角线分成四个等腰三角形,因此矩形中的计算问题可以转化到直角三角形和等腰三角形中去解决....