电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

二项式定理十大典型例题配套练习VIP免费

二项式定理十大典型例题配套练习_第1页
1/9
二项式定理十大典型例题配套练习_第2页
2/9
二项式定理十大典型例题配套练习_第3页
3/9
实用标准文案文档精锐教育学科教师辅导讲义学员编号:年级:高二课时数:3学员姓名:辅导科目:数学学科教师:教学内容1.二项式定理:011()()nnnrnrrnnnnnnabCaCabCabCbnN,2.基本概念:①二项式展开式:右边的多项式叫做()nab的二项展开式。②二项式系数:展开式中各项的系数rnC(0,1,2,,)rn.③项数:共(1)r项,是关于a与b的齐次多项式④通项:展开式中的第1r项rnrrnCab叫做二项式展开式的通项。用1rnrrrnTCab表示。3.注意关键点:①项数:展开式中总共有(1)n项。②顺序:注意正确选择a,b,其顺序不能更改。()nab与()nba是不同的。③指数:a的指数从n逐项减到0,是降幂排列。b的指数从0逐项减到n,是升幂排列。各项的次数和等于n.④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnnnnnnCCCCC项的系数是a与b的系数(包括二项式系数)。4.常用的结论:令1,,abx0122(1)()nrrnnnnnnnxCCxCxCxCxnN令1,,abx0122(1)(1)()nrrnnnnnnnnxCCxCxCxCxnN5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0nnnCC,···1kknnCC②二项式系数和:令1ab,则二项式系数的和为0122rnnnnnnnCCCCC,变形式1221rnnnnnnCCCC。实用标准文案文档③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令1,1ab,则0123(1)(11)0nnnnnnnnCCCCC,从而得到:0242132111222rrnnnnnnnnnCCCCCCC④奇数项的系数和与偶数项的系数和:0011222012012001122202121001230123()()1,(1)1,(1)nnnnnnnnnnnnnnnnnnnnnnnnnnnnaxCaxCaxCaxCaxaaxaxaxxaCaxCaxCaxCaxaxaxaxaxaaaaaaxaaaaaa令则①令则024135(1)(1),()2(1)(1),()2nnnnnnaaaaaaaaaaaa②①②得奇数项的系数和①②得偶数项的系数和⑤二项式系数的最大项:如果二项式的幂指数n是偶数时,则中间一项的二项式系数2nnC取得最大值。如果二项式的幂指数n是奇数时,则中间两项的二项式系数12nnC,12nnC同时取得最大值。⑥系数的最大项:求()nabx展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别为121,,,nAAA,设第1r项系数最大,应有112rrrrAAAA,从而解出r来。专题一题型一:二项式定理的逆用;例:12321666.nnnnnnCCCC解:012233(16)6666nnnnnnnnCCCCC与已知的有一些差距,123211221666(666)6nnnnnnnnnnnCCCCCCC0122111(6661)[(16)1](71)666nnnnnnnnCCCC练:1231393.nnnnnnCCCC实用标准文案文档解:设1231393nnnnnnnSCCCC,则122330122333333333331(13)1nnnnnnnnnnnnnnnSCCCCCCCCC(13)14133nnnS题型二:利用通项公式求nx的系数;例:在二项式3241()nxx的展开式中倒数第3项的系数为45,求含有3x的项的系数?解:由条件知245nnC,即245nC,2900nn,解得9()10nn舍去或,由2102110343411010()()rrrrrrrTCxxCx,由题意1023,643rrr解得,则含有3x的项是第7项6336110210TCxx,系数为210。练:求291()2xx展开式中9x的系数?解:291821831999111()()()()222rrrrrrrrrrrTCxCxxCxx,令1839r,则3r故9x的系数为339121()22C。题型三:利用通项公式求常数项;例:求二项式2101()2xx的展开式中的常数项?解:52021021101011()()()22rrrrrrrTCxCxx,令52002r,得8r,所以88910145()2256TC练:求二项式61(2)2xx的展开式中的常数项?解:666216611(2)(1)()(1)2()22rrrrrrrrrrTCxCxx,令620r,得3r,所以3346(1)20TC练:若21()nxx的二项展开式中第5项为常数项,则____.n解:4244421251()()nnnnTCxCxx,令2120n,得6n.题型四:利用通项公式,再讨论而确定有理数项;例:求二项式93()xx展开式中的有理项?实用标准文案文档解:12719362199()()(1)rrrrrrrTCxxCx,令276rZ,(09r)得39rr或,所以当3r时,2746r,334449(1)84TCxx,当9r时,2736r,3933109(1)TCxx。题型五:奇数项的二项式系数和=偶数项的二项式系数和;例:若2321()nxx展开式中偶数项系数和为256,求n.解:设2321()nxx展开式中各项系数依次设为01,,,naaa1x令,则有010,naaa①,1x令,则有0123(1)2,nnnaaaaa②将①-②得:1352()2,naaa11352,naaa有题意得,1822562n,9n。练:若35211()nxx的展开式中,所有的奇数项的系数和为1024,求它的中间项。解:0242132112rrnn...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

二项式定理十大典型例题配套练习

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部