利用空间向量求角和距离第2页第二课时利用空间向量求角和距离【基础巩固】1.已知直线l1的方向向量s1=(1,0,1)与直线l2的方向向量s2=(-1,2,-2),则l1与l2夹角的余弦值为(C)(A)(B)(C)(D)解析:因为s1=(1,0,1),s2=(-1,2,-2),所以cos===-.又两直线夹角的取值范围为(0,),所以l1和l2夹角的余弦值为.2.已知点A(1,2,1),B(-1,3,4),D(1,1,1),若=2,则空间P,D两点间的距离为(D)(A)(B)(C)(D)解析:设P(x,y,z),因为=2,所以(x-1,y-2,z-1)=2(-1-x,3-y,4-z),所以所以所以P(-,,3),=(,-,-2)所以||=.3.在正方体ABCD-A1B1C1D1中,M是AB的中点,则sin<,>的值等于(B)第4页故=(1,1,0),=(0,1,2),=(0,1,0).设平面BDC1的法向量为n=(x,y,z),则即令z=1,则y=-2,x=2,所以平面BDC1的一个法向量为n=(2,-2,1).设直线CD与平面BDC1所成的角为θ,则sinθ=|cos|==,故选A.6.已知点M(a,0,a),平面π过原点O,且垂直于向量n=(-,,a),则点M到平面π的距离d为.解析:=(a,0,a),则M到平面π的距离d==a.答案:a7.如图正方体ABCD-A1B1C1D1的棱长为1,O是平面A1B1C1D1的中心,则BO与平面ABC1D1所成角的正弦值为.解析:建立空间直角坐标系,如图,则B(1,1,0),O(,,1),=(1,0,1)是平面ABC1D1的一个法向量.又=(,,-1),所以BO与平面ABC1D1所成角的正弦值为==.答案:第5页8.(2019·福州高二期中)如图,已知正方体ABCD-A1B1C1D1,棱长为4,E为面A1D1DA的中心,CF=3FC1,AH=3HD.(1)求异面直线EB1与HF之间的距离;(2)求二面角H-B1E-A1的平面角的余弦值.解:以D1为原点,,,分别为x轴、y轴、z轴的正方向,建立直角坐标系D1xyz,则E(2,0,2),B1(4,4,0),H(1,0,4),F(0,4,1).(1)=(2,4,-2),=(-1,4,-3),=(-1,0,2),设平面EB1FH的法向量为n=(x,y,z),则即取x=1,则z=-3,y=-2,则n=(1,-2,-3),异面直线EB1与HF之间的距离为==.(2)=(2,4,-2),=(2,0,-2),=(-1,0,2),设平面HB1E的法向量为m1=(x′,y′,z′),则即取x′=2,则y′=-,z′=1.所以m1=(2,-,1).第6页设平面A1B1E的法向量为m2=(x,y,z),则即取x=1,y=0,z=1,则m2=(1,0,1),所以cos==.因为二面角H-B1E-A1为钝二面角,所以二面角H-B1E-A1的平面角的余弦值为-.【能力提升】9.在正方体ABCD-A1B1C1D1中,E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为(B)(A)(B)(C)(D)解析:如图所示,建立空间直角坐标系,设正方体棱长为1,则D(0,0,0),A1(1,0,1),E(1,1,),所以=(1,0,1),=(1,1,).设平面A1ED的法向量为n=(x,y,z),则即令x=1,得y=-,z=-1,所以n=(1,-,-1).第7页又平面ABCD的一个法向量为=(0,0,1),所以cos==-.所以平面A1ED与平面ABCD所成的锐二面角的余弦值为.故选B.10.已知矩形ABCD与ABEF全等,D-AB-F为直二面角,M为AB的中点,FM与BD所成角为θ,且cosθ=,则AB与BC的边长之比为(C)(A)1∶1(B)∶1(C)∶2(D)1∶2解析:设AB=a,BC=b,建立如图所示的空间直角坐标系Axyz,则相关各点坐标为F(b,0,0),M(0,,0),B(0,a,0),D(0,0,b),=(-b,,0),=(0,-a,b),所以||=,||=,·=-,|cos<,>|==,整理得4×+5×-26=0,所以==.故选C.11.(2019·烟台高二检测)棱长为1的正方体ABCD-A1B1C1D1中,E,F分别是BC,CD的中点,则点D到平面EFD1B1的距离为.解析:以点D为原点,建立如图所示的空间直角坐标系,则D(0,0,0),F(0,,0),E(,1,0),D1(0,0,1).所以=(-,-,0),=(-,-1,1).设n=(x,y,z)为平面EFD1B1的法向量,则第8页易求平面EFD1B1一个的法向量为n=(-1,1,),又=(0,,0),所以d==.答案:12.在直三棱柱ABC-A′B′C′中,底面ABC是边长为2的正三角形,D′是棱A′C′的中点,且AA′=2.(1)试在棱CC′上确定一点M,使A′M⊥平面AB′D′;(2)当点M为棱CC′中点时,求直线AB′与平面A′BM所成角的正弦值.解:(1)因为直三棱柱ABC-A′B′C′中,底面ABC是边长为2的正三角形,D′是棱A′C′的中点,所以B′D′⊥A′C′,所以B′D′⊥平面ACC′A′,所以B′D′⊥A′M,所以在棱CC′上确定一点M,使A′M⊥平面AB′D′,只要过A′作A′M⊥AD′交CC′于点M即可.(2)如图以A为原点,以,为y轴、z轴的正方向建立空间直角坐标系,因为直三棱柱ABC-A′B′C′中,底面ABC是边长为2的正三角形,D′是棱A′C′的中点,且AA′=2.所以A(0,0,0),B′(,1,2),A(0,0,2),B(,1,0),M(0,2,),第9页所以=(,1,2),=(0,2,-),=(,1,-2),设平面A′BM的...