2、圆的参数方程yxorM(x,y)0M)()(sincos{sin,cos),(速圆周运动的时刻质点作匀有明确的物理意义程。其中参数的圆的参数方,半径为这就是圆心在原点为参数即角函数的定义有:,那么由三=,设=,那么,坐标是转过的角度是,点如果在时刻trOttrytrxrytrxtrOMtyxMMt转过的角度。的位置时,到逆时针旋转绕点的几何意义是其中参数的圆的参数方程,半径为这也是圆心在原点为参数为参数,于是有,也可以取=考虑到00)(sincos{OMOMOOMrOryrxt圆的参数方程的一般形式么样的呢?的圆的参数方程又是怎半径为那么,圆心在点普通方程是的参数方程,它对应的以上是圆心在原点的圆ryxoryx),(,002222220000cos{()s()()inxxyxxryyyrr对应的普通方程为为参数由于选取的参数不同,圆有不同的参数方程,一般地,同一条曲线,可以选取不同的变数为参数,因此得到的参数方程也可以有不同的形式,形式不同的参数方程,它们表示的曲线可以是相同的,另外,在建立曲线的参数参数时,要注明参数及参数的取值范围。例、已知圆方程x2+y2+2x-6y+9=0,将它化为参数方程。解:x2+y2+2x-6y+9=0化为标准方程,(x+1)2+(y-3)2=1,∴参数方程为sin3cos1yx(θ为参数)例2如图,圆O的半径为2,P是圆上的动点,Q(6,0)是x轴上的定点,M是PQ的中点,当点P绕O作匀速圆周运动时,求点M的轨迹的参数方程。yoxPMQ)(sin3cos{sin2sin2,3cos26cos2),sin2,cos2(,),(为参数的轨迹的参数方程是所以,点由中点坐标公式得:的坐标是则点,的坐标是解:设点yxMyxPxOPyxMyoxPMQ0022000022000022(,),(,)4{26226,2,4(3)1MxyPxyxyxxyyxxyyxyMxy另解:设那么将代入,可得点的轨迹方程是yoxPMQ径,并化为普通方程。表示圆的圆心坐标、半所为参数、指出参数方程)(sin235cos2{2yx4)3()5(22yx_____________4)0(sin2cos{3,则圆心坐标是是的直径为参数,、圆rrryrrx(2,1)