电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

等腰三角形的性质.3.1等腰三角形的性质-(2)VIP免费

等腰三角形的性质.3.1等腰三角形的性质-(2)_第1页
1/19
等腰三角形的性质.3.1等腰三角形的性质-(2)_第2页
2/19
等腰三角形的性质.3.1等腰三角形的性质-(2)_第3页
3/19
动手做一做ACB△ABC有什么特点?看一看有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.ACB腰腰底边顶角底角底角1、等腰三角形一腰为3cm,底为4cm,则它的周长是;2、等腰三角形的一边长为3cm,另一边长为4cm,则它的周长是;3、等腰三角形的一边长为3cm,另一边长为8cm,则它的周长是。10cm10cm或11cm19cm小试牛刀把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角.等腰三角形是轴对称图形吗?等腰三角形是轴对称图形,对称轴是对称轴是顶角平分线所在的直线顶角平分线所在的直线。重合的线段重合的角AB=ACBD=CDAD=AD∠B=∠C.∠BAD=∠CAD∠ADB=∠ADC等腰三角形除了两腰相等以等腰三角形除了两腰相等以外外,,你还能发现它的你还能发现它的角角有什么性质吗有什么性质吗??大胆猜想猜想与论证等腰三角形的两个底角相等。已知:△ABC中,AB=AC求证:∠B=C分析:1.如何证明两个角相等?2.如何构造两个全等的三角形?ABC则有∠1=∠2D12在△ABD和△ACD中证明:作顶角的平分线AD,AB=AC∠1=∠2AD=AD(公共边)∴△ABD≌△ACD(SAS)∴∠B=∠C(全等三角形对应角相等)ABC则有BD=CDD在△ABD和△ACD中证明:作△ABC的中线ADAB=ACBD=CDAD=AD(公共边)∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形对应角相等)ABC则有∠ADB=∠ADC=90ºD在RtABD△和RtACD△中证明:作△ABC的高线ADAB=ACAD=AD(公共边)∴Rt△ABD≌Rt△ACD(HL)∴∠B=∠C(全等三角形对应角相等)用符号语言表示为:在△ABC中, AC=AB(已知)∴∠B=∠C(等边对等角)等腰三角形的性质1:等腰三角形的两个底角相等⒈等腰三角形一个底角为75°,它的另外两个角为:75°,30°70°,40°或55°,55°35°,35°小试牛刀⒉等腰三角形一个角为70°,它的另外两个角为:3.等腰三角形一个角为110°,它的另外两个角为:①顶角+2×底角=180°②顶角=180°-2×底角③底角=(180°-顶角)÷2④0°<顶角<180°⑤0°<底角<90°结论:在等腰三角形中,想一想想一想::刚才的证明除了能得到∠B=∠C你还能发现什么?重合的线段重合的角AB=ACBD=CDAD=AD∠B=∠C.∠BAD=∠CAD∠ADB=∠ADC=90°性质2:等腰三角形的顶角平分线,底边上的中线,底边上的高互相重合。(通常说成等腰三角形的“三线合一”)性质2可分解成下面三个方面来理解:1、等腰三角形的顶角的平分线,既是底边上的中线,又是底边上的高。应用格式: AB=AC∠1=∠2(已知)∴BD=DCAD⊥BC(等腰三角形三线合一)2、等腰三角形的底边上中线,既是底边上的高,又是顶角平分线。应用格式: AB=ACBD=DC(已知)∴AD⊥BC∠1=∠2(等腰三角形三线合一)3、等腰三角形的底边上的高,既是底边上的中线,又是顶角平分线。应用格式: AB=ACAD⊥BC(已知)∴BD=DC∠1=∠2(等腰三角形三线合一)ABCD211、练一练(基础训练)。(1)已知等腰三形的一个顶角为36°,则它的两个底角分别为。(2)已知等腰三角形的一个角为40°,则其它两个角分别为或。(3)已知等腰三角形的一个外角为70°,则这个三角形的三个内角分别为。(4)△ABC中,AB=AC,D在AC上,且BD=BC=AD。①图中有个等腰三角形,它们分别为。②△ABC的三个内角分别为。336°、72°、72°ACBDX2XX2X72°、72°70°、70°40°、100°110°、35°、35°△ABC、△ADB、△DBC△ABC中,AB=AC,D是BC边上的中点,DF⊥AC于FDE⊥AB于E.求证:DE=DF。ABCDEF证明: DE⊥AB,DF⊥AC(已知)∴∠BED=∠CFD又 D是BC中点(已知)∴BD=DC AB=AC(已知)∴∠B=∠C(等边对等角)在△DBE与△DCF中∠DEB=∠DFC(已证)∠B=∠C(已证)BD=DC(已证)∴△BDECDF≌△(AAS)∴DE=DF方法二:连AD。 AB=AC,BD=DC(已知)∴AD是∠BAC的平分线。(等腰三角形三线合一)又 DE⊥ABDF⊥AC∴DE=DF(角平分线上的点到这个角的两边距离相等)例1、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。xx2x2x2x解: AB=AC,BD=BC=AD,∴∠ABC=C=BDC∠∠,∠A=ABD(∠等边对等角)设∠A=x,则∠BDC=A+ABD=2x...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

等腰三角形的性质.3.1等腰三角形的性质-(2)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部