《高等数学》试卷1(下)一.选择题(3分10)1.点1M1,3,2到点4,7,22M的距离21MM().A.3B.4C.5D.62.向量jibkjia2,2,则有().A.a∥bB.a⊥bC.3,baD.4,ba3.函数1122222yxyxy的定义域是().A.21,22yxyxB.21,22yxyxC.21,22yxyxD21,22yxyx4.两个向量a与b垂直的充要条件是().A.0baB.0baC.0baD.0ba5.函数xyyxz333的极小值是().A.2B.2C.1D.16.设yxzsin,则4,1yz=().A.22B.22C.2D.27.若p级数11npn收敛,则().A.p1B.1pC.1pD.1p8.幂级数1nnnx的收敛域为().A.1,1B1,1C.1,1D.1,19.幂级数nnx02在收敛域内的和函数是().A.x11B.x22C.x12D.x2110.微分方程0lnyyyx的通解为().A.xceyB.xeyC.xcxeyD.cxey二.填空题(4分5)1.一平面过点3,0,0A且垂直于直线AB,其中点1,1,2B,则此平面方程为______________________.2.函数xyzsin的全微分是______________________________.3.设13323xyxyyxz,则yxz2_____________________________.4.x21的麦克劳林级数是___________________________.5.微分方程044yyy的通解为_________________________________.三.计算题(5分6)1.设vezusin,而yxvxyu,,求.,yzxz2.已知隐函数yxzz,由方程05242222zxzyx确定,求.,yzxz3.计算dyxD22sin,其中22224:yxD.4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R为半径).5.求微分方程xeyy23在00xy条件下的特解.四.应用题(10分2)1.要用铁板做一个体积为23m的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线xfy上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点31,1,求此曲线方程.试卷1参考答案一.选择题CBCADACCBD二.填空题1.0622zyx.2.xdyydxxycos.3.19622yyx.4.nnnnx0121.5.xexCCy221.三.计算题1.yxyxyexzxycossin,yxyxxeyzxycossin.2.12,12zyyzzxxz.3.202sindd26.4.3316R.5.xxeey23.四.应用题1.长、宽、高均为m32时,用料最省.2..312xy《高数》试卷2(下)一.选择题(3分10)1.点1,3,41M,2,1,72M的距离21MM().A.12B.13C.14D.152.设两平面方程分别为0122zyx和05yx,则两平面的夹角为().A.6B.4C.3D.23.函数22arcsinyxz的定义域为().A.10,22yxyxB.10,22yxyxC.20,22yxyxD.20,22yxyx4.点1,2,1P到平面0522zyx的距离为().A.3B.4C.5D.65.函数22232yxxyz的极大值为().A.0B.1C.1D.216.设223yxyxz,则2,1xz().A.6B.7C.8D.97.若几何级数0nnar是收敛的,则().A.1rB.1rC.1rD.1r8.幂级数nnxn01的收敛域为().A.1,1B.1,1C.1,1D.1,19.级数14sinnnna是().A.条件收敛B.绝对收敛C.发散D.不能确定10.微分方程0lnyyyx的通解为().A.cxeyB.xceyC.xeyD.xcxey二.填空题(4分5)1.直线l过点1,2,2A且与直线tztytx213平行,则直线l的方程为__________________________.2.函数xyez的全微分为___________________________.3.曲面2242yxz在点4,1,2处的切平面方程为_____________________________________.4.211x的麦克劳林级数是______________________.5.微分方程03ydxxdy在11xy条件下的特解为______________________________.三.计算题(5分6)1.设kjbkjia32,2,求.ba2.设22uvvuz,而yxvyxusin,cos,求.,yzxz3.已知隐函数yxzz,由233xyzx确定,求.,yzxz4.如图,求球面22224azyx与圆柱面axyx222(0a)所围的几何体的体积.5.求微分方程023yyy的通解.四.应用题(10分2)1.试用二重积分计算由xyxy2,和4x所围图形的面积.2.如图,以初速度0v将质点铅直上抛,不计阻力,求质点的运动规律.txx(提示:gdtxd22.当0t时,有0xx,0vdtdx)试卷2参考答案一.选择题CBABACCDBA.二.填空题1.211212zyx.2.xdyydxexy.3.488zyx.4.021nnnx.5.3xy.三.计算题1.kji238.2.yyxyyyyxyzyyyyxxz3333223cossincossincossin,sincoscossin.3.22,zxyxzyzzxyyzxz.4.3223323a.5.xxeCeCy221.四.应用题1.316.2.00221xtvgtx.《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分)1、二阶行列式2-3的值为()45A、10B、20C、24D、222、设a=i+2j-k,b=2j+3k,则a与b的向量积为()A、i-j+2kB、8i-j+2kC、8i-3j+2kD、8i-3i+k3、点P(-1、-2、1)到平面x+2y-2z-5=0的距离为()A、2B、3C、4D、54...