平面直角坐标系(一)教学设计―――孙厚圣教学目标设计:知识目标:1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;2.认识并能画出平面直角坐标系;3.能在给定的直角坐标系中,由点的位置写出它的坐标。能力目标:1.通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交流意识;2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。情感目标:由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。教学重点:1.理解平面直角坐标系的有关知识;2.在给定的平面直角坐标系中,会根据点的位置写出它的坐标;3.由观察点的坐标、纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。教学难点:1.横(或纵)坐标相同的点的连线与坐标轴的关系的探究;2.坐标轴上点的坐标有什么特点的总结。教学过程设计环节一:情景导入情景问题:用数轴可以确定一直线上点的位置和表示数据的大小,如何确定平面内点的位置呢?趣味情景:直角坐标系的由来平面直角坐标系又叫“笛卡尔坐标系”,你知道笛卡尔是怎样想到创建直角坐标系的吗?传说中有这么一个故事:有一天,笛卡尔(1596—1650,法国哲学家、数学家、物理学家)生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。如果用两根数轴就象蜘蛛织网一样就可以确定平面上点的位置了。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。二环节:感受生活中的情境,导入新课同学们,你们喜欢旅游吗?假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(图5-6),回答以下问题:(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?在上一节课,我们已经学习了许多确定位置的方法,这个问题中,大家看用哪种方法比较合适?三环节:进行实践,感受新知1.学生自学课本,理解概念:平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分。2.动手操作,学生按要求画出平面直角坐标系,进行展示,比较,看谁画得好。3.例题讲解(出示投影)例1例1写出图中的多边形ABCDEF各顶点的坐标。4.想一想在例1中,ABCDEFO11xyABCDEF1yx(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段CE位置有什么特点?(3)坐标轴上点的坐标有什么特点?由B(0,-3),C(3,-3)可以看出它们的纵坐标相同,即B,C两点到X轴的距离相等,所以线段BC平行于横轴(x轴),垂直于纵轴(y轴)。四环节:学有所用,身临其境指定学生坐位其中一横排为x轴,一纵列为y轴,确定向东为正方向,相邻两同学间距离为一个单位长度建立平面直角坐标系,各同学说出自己的坐标。改变坐标原点,重复活动。五环节:感悟与收获1.认识并能画出平面直角坐标系。2.在给定的直角坐标系中,由点的位置写出它的坐标。3.能适当建立直角坐标系,写出直角坐标系中有关点的坐标。4.横(纵)坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直线平行于x轴,垂直于y轴。5.坐标轴上点的纵坐标为0;纵坐标轴上点的坐标为0。6.各个象限内的点的坐标特征是:第一象限(+,+...