2016-2017学年湖北省华中师大一附中高一(下)期中数学试卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知等比数列{an}满足:a3•a7=,则cosa5=()A.B.C.±D.±2.△ABC中,a,b,c分别为角A,B,C的对边,a=,b=,B=45°,则角C的大小为()A.15°B.75°C.15°或75°D.60°或120°3.已知向量=(﹣1,2),=(3,1),=(k,4),且(﹣)⊥,则•(+)=()A.(2,12)B.(﹣2,12)C.14D.104.已知数列{an}的通项为an=,则满足an+1<an的n的最大值为()A.3B.4C.5D.65.△ABC的三内角A,B,C所对边的长分别为a,b,c.设向量=(a+c,b),=(b﹣a,c﹣a),若向量∥,则角C的大小是()A.B.C.D.6.等差数列{an}的前n项和为Sn,已知a5=8,S3=6,则S10﹣S7的值是()A.24B.48C.60D.727.已知=(1,﹣1),=﹣,=+,若△OAB是以点O为直角顶点的等腰直角三角形,则△OAB的面积为()A.2B.4C.2D.8.一个正整数数表如表所示(表中下一行中数的个数是上一行中数的个数的2倍),则第9行中的第6个数是()第1行1第2行23第3行4567……A.132B.261C.262D.5179.在△ABC中,三个内角A,B,C所对的边分别为a,b,c.已知2acosB=c,且满足sinAsinB(2﹣cosC)=sin2+,则△ABC为()A.锐角非等边三角形B.等边三角形C.等腰直角三角形D.钝角三角形10.在△ABC中,AB=2,BC=3,∠ABC=60°,AD为BC边上的高,O为AD的中点,若,则λ+μ=()A.1B.C.D.11.设数列{an}满足a1=2,an+1=1﹣,记数列{an}的前n项之积为Tn,则T2018=()A.1B.2C.D.12.已知△ABC周长为6,a,b,c分别为角A,B,C的对边,且a,b,c成等比数列,则•的取值范围为()A.[2,18)B.(,2]C.[2,)D.(2,9﹣3)二、填空题:(本大题共4小题,每小题5分,共20分)13.已知向量,满足=(1,),•(﹣)=﹣3,则向量在方向上的投影为.14.已知数列{an}的前n项和Sn=3n﹣2,求{an}的通项公式.15.如图,在山脚A测得山顶P的仰角为60°,沿倾斜角为15°的斜坡向上走200米到B,在B处测得山顶P的仰角为75°,则山高h=米.16.已知数列{an}的前n项和为Sn,对任意n∈N+,Sn=(﹣1)nan++n﹣3且(t﹣an+1)(t﹣an)<0恒成立,则实数t的取值范围是.三、解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.设正项等比数列{an}的前n项和为Sn,且满足S3=3a3+2a2,a4=8.(1)求数列{an}的通项公式;(2)设数列bn=log2an,数列{bn}的前n项和为Tn,求使得Tn取最大值的正整数n的值.18.在△ABC中,a,b,c分别为角A,B,C的对边,.(1)求角A的度数;(2)若,求△ABC的面积.19.已知向量满足,||=1,|k+|=|﹣k|,k>0.(1)求与的夹角θ的最大值;(2)若与共线,求实数k的值.20.如图,某小区准备将闲置的一直角三角形地块开发成公共绿地,图中.设计时要求绿地部分(如图中阴影部分所示)有公共绿地走道MN,且两边是两个关于走道MN对称的三角形(△AMN和△A'MN).现考虑方便和绿地最大化原则,要求点M与点A,B均不重合,A'落在边BC上且不与端点B,C重合,设∠AMN=θ.(1)若,求此时公共绿地的面积;(2)为方便小区居民的行走,设计时要求AN,A'N的长度最短,求此时绿地公共走道MN的长度.21.已知数列{an}满足(n∈N*),a1=1.(1)证明:数列为等差数列,并求数列{an}的通项公式;(2)若记bn为满足不等式的正整数k的个数,数列{}的前n项和为Sn,求关于n的不等式Sn<4032的最大正整数解.22.已知数列{an}满足a1=1,点(an,an+1)在直线y=2x+1上.(1)求数列{an}的通项公式;(2)若数列{bn}满足b1=a1,=+…+(n≥2且n∈N*),求bn+1an﹣(bn+1)an+1的值;(3)对于(2)中的数列{bn},求证:(1+b1)(1+b2)…(1+bn)<b1b2…bn(n∈N*).2016-2017学年湖北省华中师大一附中高一(下)期中数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知等比数列{an}满足:a3•a7=,则cosa5=...