考点11.5二项分布与正态分布考点梳理1.条件概率及其性质(1)对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示,其公式为P(B|A)=(P(A)>0).在古典概型中,若用n(A)表示事件A中基本事件的个数,则P(B|A)=.(2)条件概率具有的性质①0≤P(B|A)≤1;②如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).2.相互独立事件(1)对于事件A,B,若事件A的发生与事件B的发生互不影响,则称事件A,B是相互独立事件.(2)若A与B相互独立,则P(B|A)=P(B).(3)若A与B相互独立,则A与,与B,与也都相互独立.(4)P(AB)=P(A)P(B)⇔A与B相互独立.3.独立重复试验与二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=Cpk(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p),并称p为成功概率.4.两点分布与二项分布的均值、方差(1)若随机变量X服从两点分布,则E(X)=p,D(X)=p(1-p).(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).5.正态分布(1)正态曲线:函数φμ,σ(x)=,x∈(-∞,+∞),其中实数μ和σ为参数(σ>0,μ∈R).我们称函数φμ,σ(x)的图象为正态分布密度曲线,简称正态曲线.(2)正态曲线的特点①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值;④曲线与x轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态总体在三个特殊区间内取值的概率值①P(μ-σ