章末综合测评(四)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.用数学归纳法证明“1+2+22+…+25n-1(n∈N+)能被31整除”,当n=1时原式为()A.1B.1+2C.1+2+3+4D.1+2+22+23+24【解析】左边=1+2+22+…+25n-1,所以n=1时,应为1+2+…+25×1-1=1+2+22+23+24.故选D.【答案】D2.下列说法中正确的是()A.若一个命题当n=1,2时为真,则此命题为真命题B.若一个命题当n=k时成立且推得n=k+1时也成立,则此命题为真命题C.若一个命题当n=1,2时为真,则当n=3时此命题也为真D.若一个命题当n=1时为真,n=k时为真能推得n=k+1时亦为真,则此命题为真命题【解析】由数学归纳法定义可知,只有当n的初始取值成立且由n=k成立能推得n=k+1时也成立时,才可以证明结论正确,二者缺一不可.A,B,C项均不全面.【答案】D3.设S(n)=+++…+,则()A.S(n)共有n项,当n=2时,S(2)=+B.S(n)共有n+1项,当n=2时,S(2)=++C.S(n)共有n2-n项,当n=2时,S(2)=++D.S(n)共有n2-n+1项,当n=2时,S(2)=++【解析】S(n)共有n2-n+1项,当n=2时,S(2)=++.【答案】D4.数列{an}中,已知a1=1,当n≥2时,an-an-1=2n-1,依次计算a2,a3,a4后,猜想an的表达式是()【导学号:32750073】A.3n-2B.n2C.3n-1D.4n-3【解析】计算知a1=1,a2=4,a3=9,a4=16,所以可猜想an=n2.【答案】B5.平面内原有k条直线,他们的交点个数记为f(k),则增加一条直线l后,它们的交点个数最多为()A.f(k)+1B.f(k)+kC.f(k)+k+1D.k·f(k)【解析】第k+1条直线与前k条直线都有不同的交点,此时应比原先增加k个交点.【答案】B6.下列代数式,n∈N+,能被13整除的是()A.n3+5nB.34n+1+52n+1C.62n-1+1D.42n+1+3n+2【解析】当n=1时,n3+5n=6,34n+1+52n+1=368,62n-1+1=7,42n+1+3n+2=91,只有91能被13整除.【答案】D7.用数学归纳法证明命题“当n是正奇数时,xn+yn能被x+y整除”时,第二步正确的证明方法是()A.假设n=k(k∈N+)时成立,证明n=k+1时命题也成立B.假设n=k(k是正奇数)时成立,证明n=k+1时命题也成立C.假设n=2k+1(k∈N+)时成立,证明n=2k+3时命题也成立D.假设n=2k-1(k∈N+)时成立,证明n=2k+1时命题也成立【解析】假设n的取值必须取到初始值1,且后面的n的值比前面的值大2.A,B,C错.故选D.【答案】D8.设0<θ<,已知a1=2cosθ,an+1=,则猜想an为()A.2cosB.2cosC.2cosD.2sin【解析】a1=2cosθ,a2==2cos,a3==2cos,猜想an=2cos.【答案】B9.用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上()A.k2B.(k+1)2C.D.(k2+1)+(k2+2)+…+(k+1)2【解析】当n=k时,左端=1+1+2+3+…+k2,当n=k+1时,左端=1+2+3+…+k2+(k2+1)+(k2+2)+…+(k+1)2.故当n=k+1时,左端应在n=k的基础上加上(k2+1)+(k2+2)+…+(k+1)2.【答案】D10.用数学归纳法证明“42n-1+3n+1(n∈N+)能被13整除”的第二步中,当n=k+1时为了使用归纳假设,对42k+1+3k+2变形正确的是()A.16(42k-1+3k+1)-13×3k+1B.4×42k+9×3kC.(42k-1+3k+1)+15×42k-1+2×3k+1D.3(42k-1+3k+1)-13×42k-1【解析】42k+1+3k+2=16×42k-1+3k+2=16(42k-1+3k+1)+3k+2-16×3k+1=16(42k-1+3k+1)-13×3k+1.【答案】A11.如果命题P(n)对于n=k成立,则它对n=k+2亦成立,又若P(n)对n=2成立,则下列结论正确的是()A.P(n)对所有自然数n成立B.P(n)对所有偶自然数n成立C.P(n)对所有正自然数n成立D.P(n)对所有比1大的自然数n成立【解析】因为n=2时,由n=k+2的“递推”关系,可得到n=4成立,再得到n=6成立,依次类推,因此,命题P(n)对所有偶自然数n成立.【答案】B12.在数列{an}中,a1=且Sn=n(2n-1)an,通过求a2,a3,a4,猜想an的表达式为()A.B.C.D.【解析】 a1=,由Sn=n(2n-1)an,得a1+a2=2(2×2-1)a2,解得a2==,a1+a2+a...