1解析:当p<0时,f(x)=xp=()-p,在(0,1)上单调递减,∴y>f(1)=1在直线y=x上面,故只有C正确.答案:C3.四人赛跑,假设其跑过的路程和时间的函数关系分别为f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x如果他们一直跑下去,最终跑在最前面的人具有的函数关系是()A.f1(x)=x2B.f2(x)=4xC.f3(x)=log2xD.f4(x)=2x解析:在同一坐标系中画图像可知,当x取较大值时指数函数y=2x在上方,即2x值最大.答案:D4.如图所示的是某池塘中的浮萍蔓延的面积y(m2)与时间t(月)的关系:y=at,有以下叙述:①这个指数函数的底数为2;②第5个月时,浮萍面积就会超过30m2;③浮萍从4m2蔓延到12m2需要经过1.5个月;④浮萍每月增加的面积都相等;⑤若浮萍蔓延到2m2,3m2,6m2所经过的时间分别为t1,t2,t3,则t1+t2=t3.其中正确的是()A.①②B.①②③④C.②③④⑤D.①②⑤解析:由于图像经过点(1,2),所以2=a1,即a=2.①正确.∴y=2t.当t=5时,y=25=32>30,故②正确.令y=4,得t=2.即第2个月浮萍蔓延的面积为4m2.再过1.5个月,即t=3.5时,y=23.5=2=8m2,故③错误.前几个月浮萍的面积分别为2m2,4m2,8m2,16m2,显然浮萍每个月增加的面积不相等,故④错误.若浮萍蔓延到2m2,3m2,6m2所经过的时间分别为t1,t2,t3,即2t1=2,2t2=3,2t3=6,则t1=log22=1,t2=log23,t3=log26,1又log26=log2(2×3)=log22+log23,∴t3=t1+t2,故⑤成立.综上,①②⑤正确.答案:D5.近几年由于北京房价的上涨,引起了二手房市场交易的火爆.房子没有什么变化,但价格却上涨了,小张在2000年以15万元的价格购得一所新房子,假设这10年来价格年膨胀率不变,那么到2010年,这所房子的价格y(万元)与价格年膨胀率x之间的函数关系式是________.解析:1年后,y=15(1+x);2年后,y=15(1+x)2;3年后,y=15(1+x)3,…,10年后,y=15(1+x)10.答案:y=15(1+x)106.已知元素“碳14”每经过5730年,其质量就变成原来的一半.现有一文物,测得其中“碳14”的残存量为原来的41%,此文物距现在约有________年.(注:精确到百位数,lg2=0.3010,lg4.1=0.613)解析:设距现在为x年,则有()=41%,两边取对数,利用计算器可得x≈7400.答案:74007.已知甲、乙两个工厂在今年的1月份的利润都是6万元,且甲厂在2月份的利润是14万元,乙厂在2月份的利润是8万元.若甲、乙两个工厂的利润(万元)与月份x之间的函数关系式分别符合下列函数模型:f(x)=a1x2+b1x+6,g(x)=a23x+b2(a1,a2,b1,b2∈R).(1)求甲、乙两个工厂今年5月份的利润;(2)在同一直角坐标系下画出函数f(x)与g(x)的草图,并根据草图比较今年甲、乙两个工厂的利润的大小情况.解:(1)依题意:由有解得a1=4,b1=-4,∴f(x)=4x2-4x+6.由有解得a2=,b2=5,∴g(x)=×3x+5=3x-1+5,所以甲在今年5月份的利润为f(5)=86万元,乙在今年5月份的利润为g(5)=86万元,故有f(5)=g(5),即甲、乙两个工厂今年5月份的利润相等;(2)作函数图像如下:从图中,可以看出今年甲、乙两个工厂的利润:当x=1或x=5时,有f(x)=g(x);当1
1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。
碎片内容