课后作业例子1和练习(1)如图,取两根木条a、b,将它们钉在一起,并把它们想象成两条直线,就得到一个相交线的模型,你能说出其中的邻补角与对顶角吗?如果其中一个角是35°,其他三个角各是多少度?这个角是90°、115°、m°呢?解:将两根木条抽象成相交直线,如图,设直线a、b相交于点O.①当∠1=35°时,由邻补角的定义可得∠2=180°-35°=145°;由“对顶角相等”,可得∠3=∠1=35°,∠4=∠2=145°.②当∠1=90°时,同(1)可得∠2=180°-90°=90°,∠3=∠1=90°,∠4=∠2=90°.③当∠1=115°时,∠2=180°-115°=65°,∠3=∠1=115°,∠4=∠2=65°.④当∠1=m°时,∠2=180°-m°,∠3=∠1=m°,∠4=∠2=180°-m°.(2)下列说法正确的是………(D)A.有公共顶点的两个角是对顶角;B.相等的两个角是对顶角C.有公共顶点并且相等的角是对顶角D.两条直线相交成的四个角中,有公共顶点且没有公共边的两个角是对顶角解:应选D.注:①只有两条直线相交时,才能产生对顶角,对顶角是成对出现的;②对顶角本质特征是:两个角有公共顶点,其两边互为反向延长线.(3)已知直线AB、CD相交于点O,∠AOC+∠BOD=240°,求∠BOC的度数.分析:如图所示,∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD;又∠AOC+∠BOD=240°,从而∠AOC=∠BOD=120°;又∠AOC和∠BOC是邻补角,所以∠BOC=180°-∠AOC=60°.解:因为直线AB、CD相交于点O,所以∠AOC和∠BOD是对顶角(对顶角的定义).∠AOC和∠BOC是邻补角(邻补角的定义),所以∠AOC=∠BOC(对顶角相等).又因为∠AOC+∠BOD=240°(已知),所以∠AOC=∠BOD=120°.所以∠BOC=180°-∠AOC=60°(邻补角的定义).(4)如图,AB与CD是直线,图中共有对顶角___B___对.A.1B.2C.3D.4分析:在图中只有AB和CD两条直线相交,根据对顶角的特征:两个角有公共顶点,其两边互为反向延长线可知对顶角只有两对即∠AOC和∠BOD、∠AOD和∠BOC.解:应选B.