2016学年第九讲线性规划常见题型及解法线性规划是新教材中新增的内容之一,由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。一、求线性目标函数的取值范围例1若x、y满足约束条件,则z=x+2y的取值范围是A、[2,6]B、[2,5]C、[3,6]D、(3,5]二、求可行域的面积例2、不等式组表示的平面区域的面积为()A、4B、1C、5D、无穷大三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1五、求非线性目标函数的最值例5、已知x、y满足以下约束条件,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,D、,六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)七.应用题例7、某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m3,第二种有56m3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产一个衣柜可获利10元.木器厂在现有木料条件下,圆桌和衣柜各生产多少,才使获得利润最多?产品木料(单位m3)第一种第二种圆桌0.180.08衣柜0.090.28练习、某养鸡场有1万只鸡,用动物饲料和谷物饲料混合喂养.每天每只鸡平均吃混合饲料0.5kg,其中动物饲料不能少于谷物饲料的15.动物饲料每千克0.9元,谷物饲料每千克0.28元,饲料公司每周仅保证供应谷物饲料50000kg,问饲料怎样混合,才使成本最低.2016学年第九讲数列应用题例题1某市2003年共有1万辆燃油型公交车。有关部门计划于2004年投入128辆电力型公交车,随后电力型公交车每年的投入比上一年增加50%,试问:(1)该市在2010年应该投入多少辆电力型公交车?(2)到哪一年底,电力型公交车的数量开始超过该市公交车总量的13?例题2假设某市2004年新建住房面积400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价层的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?练习某厂在一个空间容积为2000m3的密封车间内生产某种化学药品,开始生产后,每满60分钟一次性释放出有害气体am3,并迅速扩散到室内空气中。每次释放有害气体后,车间内的净化设备随即自动工作20分钟,将有害气体的含量降至该车间内原有有害气体含量的r%,然后停止工作,待下一次有害气体释放后再继续工作。(1)求第n次释放出有害气体后(净化之前)车间内共有有害气体量为多少?(2)安全生产规定:只有当车间内的有害气体总量不超过1.25am3时才能正常生产。当r=20时,该车间能否连续正常生产6.5小时?请说明理由。2016学年第九讲充分与必要条件1、设,则的一个必要不充分条件是()A.B.C.D.2.命题“”的一个必要不充分条件是()A.B.C.D.3、如果是的必要不充分条件,是的充分必要条件,是的充分不必要条件,那么是的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件4.若是的充分不必要条件,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.是否存在实数,使“”是“”的充分条件?如果存在,求出的取值范围.是否存在实数,使“”是“”的必要条件.如果存在,求出的取值范围.6.已知,,若是的必要而不充分条件,求实数的取值范围.