1§2.3二元一次不等式(组)与简单的线性规划问题最新考纲考情考向分析了解二元一次不等式的几何意义,掌握平面区域与二元一次不等式组之间的关系,并会求解简单的二元线性规划问题.以画二元一次不等式(组)表示的平面区域、目标函数最值的求法为主,兼顾由最优解(可行域)情况确定参数的范围,加强转化与化归和数形结合思想的应用意识.本节内容在高考中以选择、填空题的形式进行考查,难度中低档.1.二元一次不等式(组)表示的平面区域不等式表示区域Ax+By+C>0直线Ax+By+C=0某一侧的所有点组成的平面区域不包括边界直线Ax+By+C≥0包括边界直线不等式组各个不等式所表示平面区域的公共部分2.线性规划中的基本概念名称意义约束条件由变量x,y组成的不等式(组)线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数关于x,y的函数解析式,如z=2x+3y等线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题2概念方法微思考1.不等式x≥0表示的平面区域是什么?提示不等式x≥0表示的区域是y轴的右侧(包括y轴).2.可行解一定是最优解吗?二者有何关系?提示不一定.最优解是可行解中的一个或多个.最优解必定是可行解,但可行解不一定是最优解,最优解不一定唯一.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)二元一次不等式组所表示的平面区域是各个不等式所表示的平面区域的交集.(√)(2)不等式Ax+By+C>0表示的平面区域一定在直线Ax+By+C=0的上方.(×)(3)点(x1,y1),(x2,y2)在直线Ax+By+C=0同侧的充要条件是(Ax1+By1+C)(Ax2+By2+C)>0,异侧的充要条件是(Ax1+By1+C)(Ax2+By2+C)<0.(√)(4)第二、四象限表示的平面区域可以用不等式xy<0表示.(√)(5)线性目标函数的最优解是唯一的.(×)(6)最优解指的是使目标函数取得最大值或最小值的可行解.(√)(7)目标函数z=ax+by(b≠0)中,z的几何意义是直线ax+by-z=0在y轴上的截距.(×)题组二教材改编2.[P86T3]不等式组x-3y+6≥0,x-y+2<0表示的平面区域是()答案B解析x-3y+6≥0表示直线x-3y+6=0及其右下方部分,x-y+2<0表示直线x-y+2=0的左上方部分,故不等式组表示的平面区域为选项B中的阴影部分.3题组三易错自纠3.下列各点中,不在x+y-1≤0表示的平面区域内的是()A.(0,0)B.(-1,1)C.(-1,3)D.(2,-3)答案C解析把各点的坐标代入可得(-1,3)不适合,故选C.4.(2018·全国Ⅰ)若x,y满足约束条件x-2y-2≤0,x-y+1≥0,y≤0,则z=3x+2y的最大值为________.答案6解析作出满足约束条件的可行域如图阴影部分(含边界)所示.由z=3x+2y,得y=-32x+z2.作直线l0:y=-32x,平移直线l0,当直线y=-32x+z2过点(2,0)时,z取最大值,zmax=3×2+2×0=6.5.已知x,y满足约束条件x-y+5≥0,x+y≥0,x≤3,若使得z=ax+y取最大值的点(x,y)有无数个,则a的值为________.答案-1解析先根据约束条件画出可行域,如图中阴影部分(含边界)所示,当直线y=-ax+z和直线AB重合时,z取得最大值的点(x,y)有无数个,∴-a=kAB=1,∴a=-1.4题型一二元一次不等式(组)表示的平面区域命题点1不含参数的平面区域问题例1在平面直角坐标系中,不等式组3x-y≤0,x-3y+2≥0,y≥0表示的平面区域的面积是()A.32B.3C.2D.23答案B解析作出不等式组表示的平面区域是以点O(0,0),B(-2,0)和A(1,3)为顶点的三角形区域,如图所示的阴影部分(含边界),由图知该平面区域的面积为12×2×3=3,故选B.命题点2含参数的平面区域问题例2(2018·嘉兴市基础测试)若不等式组x-y>0,3x+y<3,x+y>a表示的平面区域为一个三角形的内部区域,则实数a的取值范围是()A.-∞,34B.34,+∞5C.-∞,32D.32,+∞答案C解析如图所示,当直线x+y=a在直线x+y=32(该直线经过直线x-y=0和直线3x+y=3的交点)的下方时,原不等式组表示的平面区域为一个三角形的内部区域,因此a<32,故选C.思维升华平面区域的形状问题主要有两种...