第5章概率基础教学内容正态分布t-分布F分布统计推断的过程样样本本总体总体样本统计量例如:样本均值、比例、方差样本统计量例如:样本均值、比例、方差总体均值、总体均值、比例、方差比例、方差4-3设X是R.V.,x是一实数.记F(x)=P(X1)4-9正态分布的标准化变换:若随机变量X服从正态分布N(μ,σ2),则随机变量Z=服从标准正态分布,即Z~N(0,1)。X4-10例:某大学英语考试成绩服从正态分布,已知平均成绩为70分,标准差为10分。求该大学英语成绩在60—75分的概率。)(.).()(6070707570101010105053286075XpZpXp例:假定学生某门学科的考试成绩服从均值为60分,标准差为12分的正态分布,问某一学生的成绩在60分到75分之间的概率应为多少?解:6060607560607512121201.250.3944XpXppZ补:其他常用连续型随机变量的概率分布补:其他常用连续型随机变量的概率分布t-分布:设X服从标准正态分布,Y服从自由度为n的2分布,且它们相互独立,则随机变量T=X/Y/n所服从的分布为自由度为n的t-分布。当n30时,t-分布与标准正态分布的差别非常小,可用标准正态分布代替。F-分布:设X和Y是相互独立的2分布,自由度分别是f1和f2,则称随机变量F=(X/Y).(f2/f1)所服从的分布为F-分布,称为它的自由度。第6章参数估计教学内容6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体成数的区间估计6.5样本容量的确定学习目标掌握样本平均数和样本成数的抽样分布理解总体参数点估计的基本方法及其优良标准;掌握总体均值和成数指标的区间估计方法;会做题目6.1抽样与抽样分布6.1.1什么是抽样推断基本概念总体与样本(见第一章)样本量与样本个数总体参数与样本统计量重复抽样与不重复抽样这些概念是统计学特有的,体现了统计学的基本思想与方法。4-16(一)总体和样本(参见第1章)1.总体:又称全及总体、母体,指所要研究对象的全体,由许多客观存在的具有某种共同性质的单位构成。总体单位数用N表示。2.样本:又称子样,来自总体,是从总体中按随机原则抽选出来的部分,由抽选的单位构成。样本单位数用n表示。3.总体是唯一的、确定的,而样本是不确定的、可变的、随机的。4-17(二)样本容量与样本个数样本容量:一个样本中所包含的单位数,用n表示。样本个数:又称样本可能数目,指从一个总体中所可能抽取的样本的个数。对于有限总体,样本个数可以计算出来。样本个数的多少与抽样方法有关。(这个概念只是对有限总体有意义,对无限总体没有意义!)18(三)总体参数和样本统计量总体参数:反映总体数量特征的指标。其数值...