电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第八章 第1讲 空间几何体及其表面积与体积配套限时规范训练 理 苏教版VIP免费

高考数学一轮复习 第八章 第1讲 空间几何体及其表面积与体积配套限时规范训练 理 苏教版_第1页
1/6
高考数学一轮复习 第八章 第1讲 空间几何体及其表面积与体积配套限时规范训练 理 苏教版_第2页
2/6
高考数学一轮复习 第八章 第1讲 空间几何体及其表面积与体积配套限时规范训练 理 苏教版_第3页
3/6
第八章立体几何第1讲空间几何体及其表面积与体积分层训练A级基础达标演练(时间:30分钟满分:60分)一、填空题(每小题5分,共30分)1.以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数是________.解析命题①错,因为这条边若是直角三角形的斜边,则得不到圆锥.命题②题,因这条腰必须是垂直于两底的腰.命题③对.命题④错,必须用平行于圆锥底面的平面截圆锥才行.答案12.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的四个顶点,这些几何形体是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析①显然可能;②不可能;③取一个顶点处的三条棱,连接各棱端点构成的四面体;④取正方体中对面上的两条异面对角线的四个端点构成的几何体;⑤正方体ABCD-A1B1C1D1中,三棱锥D1-DBC满足条件.答案①③④⑤3.(·常州模拟)在三棱锥S-ABC中,面SAB,SBC,SAC都是以S为直角顶点的等腰直角三角形,且AB=BC=CA=2,则三棱锥S-ABC的表面积是________.解析设侧棱长为a,则a=2,a=,侧面积为3××a2=3,底面积为×22=,表面积为3+.答案3+4.(·湖北卷)圆柱形容器内盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm.解析设球的半径为rcm,则πr2×8+πr3×3=πr2×6r.解得r=4cm.答案45.(·苏州模拟)如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为,连接顶点和底面中心即为高,可求得高为,所以体积V=×1×1×=.答案6.如图所示,三棱柱ABC-A1B1C1的所有棱长均为a,∠A1AB=∠A1AC=60°,则其全面积为________.解析如题图,过B作BD⊥AA1于D,连接CD,则△BAD≌△CAD,所以∠ADB=∠ADC=90°,所以AD⊥CD,AD⊥BD,所以△BCD为垂直于侧棱AA1的截面.又因为∠BAD=60°,AB=a,所以BD=a.所以△BDC的周长为(+1)a,从而S侧=(+1)a2,S底=×a2sin60°=a2.故S全=S侧+2S底=a2.答案a2二、解答题(每小题15分,共30分)7.(·辽宁卷)如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.(1)证明:PQ⊥平面DCQ;(2)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.(1)证明由条件知四边形PDAQ为直角梯形.因为QA⊥平面ABCD,所以平面PDAQ⊥平面ABCD,交线为AD.又四边形ABCD为正方形,DC⊥AD,所以DC⊥平面PDAQ,可得PQ⊥DC.在直角梯形PDAQ中可得DQ=PQ=PD,则PQ⊥QD.又DQ∩DC=D,所以PQ⊥平面DCQ.(2)解设AB=a.由题设知AQ为棱锥Q-ABCD的高,所以棱锥Q-ABCD的体积V1=a3.由(1)知PQ为棱锥P-DCQ的高,而PQ=a,△DCQ的面积为a2,所以棱锥P-DCQ的体积V2=a3.故棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值为1.8.如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.(1)求证:PC⊥AB;(2)求点C到平面APB的距离.(1)证明取AB中点D,连接PD,CD.因为AP=BP,所以PD⊥AB,因为AC=BC,所以CD⊥AB.因为PD∩CD=D,所以AB⊥平面PCD.因为PC⊂平面PCD,所以PC⊥AB.(2)解设C到平面APB的距离为h,则由题意,得AP=PB=AB==2,所以PC==2.因为CD=AB=,PD=PB=,所以PC2+CD2=PD2,所以PC⊥CD.由(1)得AB⊥平面PCD,于是由VC-APB=VA-PDC+VB-PDC,得·h·S△APB=AB·S△PDC,所以h===.故点C到平面APB的距离为.分层训练B级创新能力提升1.正方体ABCD-A1B1C1D1的棱长为2,点M是BC的中点,点P是平面ABCD内的一个动点,且满足PM=2,P到直线A1D1的距离为,则点P的轨迹是________.解析由PM=2,知点P在以M为圆心,2为半径的圆上.又由P到直线A1D1的距离为,知点P在与BC平行且过AB中点的直线...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 第八章 第1讲 空间几何体及其表面积与体积配套限时规范训练 理 苏教版

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部