动能定理的简单应用5.161.某人站在离地10m高处,将0.1Kg的小球以20m/s的速度抛出,求:(1)人对小球做了多少功?(2)小球落地时的速度多大(不计空气阻力)?(3)若小球落地时速度实际为24m/s,则小球克服阻力做了多少功?(g取10m/s²)2.四分之一光滑圆弧轨道与平台在B点处相切,圆弧半径R=1m,m=1kg的物块置于A点,A、B间距离为2m,物块与平台间μ为0.2。现用水平恒力F拉物块,使之由静止开始向右运动,到B点时撤去拉力,物块刚好能滑到轨道最高点。(g=10m/s2)(1)求F的大小;(2)求物块刚滑到四分之一圆弧轨道的B点时对轨道的压力大小。3.如图所示,粗糙水平轨道AB与半径为R的光滑半圆形轨道BC相切于B点,现有质量为m的小物块(可看做质点)以初速度,从A点开始向右运动,并进入半圆形轨道,若小物块恰好能到达半圆形轨道的最高点C,最终又落于水平轨道上的A点,重力加速度为g,求:•(1)小物块落到水平轨道上的A点时速度的大小vA;•(2)小物块运动到B点时,物体对轨道的压力;•(3)水平轨道与小物块间的动摩擦因数μ。4.如图所示,质量为m的小物块在粗糙水平桌面上做直线运动,经距离L后以速度v飞离桌面,最终落在水平地面上。已知L=1.4m,m=0.10kg,物块与桌面间的动摩擦因数μ=0.25,桌面高h=0.45m,测得小物块落地点距飞出点的水平距离s=0.9m(不计空气阻力,重力加速度g取10m/s2)。求:•⑴小物块刚飞离桌面时的速度v;•⑵小物块的初速度大小v0。