点、直线、平面之间的位置关系(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a,b是异面直线,直线c∥a,则c与b的位置关系是()A.相交B.异面C.平行D.异面或相交【解析】根据空间两条直线的位置关系和公理4可知c与b异面或相交,但不可能平行.【答案】D2.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直【解析】A、B、C显然正确.易知过一条直线有无数个平面与已知平面垂直.选D.【答案】D3.如图1,在四面体中,若直线EF和GH相交,则它们的交点一定()图1A.在直线DB上B.在直线AB上C.在直线CB上D.都不对【解析】 EF与GH相交,设EF∩GH=M,∴M∈EF,M∈GH.又 EF⊂面ABD,GH⊂面BCD,∴M∈面ABD,M∈面BCD,又 面ABD∩面BCD=BD,∴M∈BD,故选A.【答案】A4.设a、b为两条直线,α、β为两个平面,则正确的命题是()【导学号:09960089】A.若a、b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b【解析】A中,a、b可以平行、相交或异面;B中,a、b可以平行或异面;C中,α、β可以平行或相交.【答案】D5.如图2,在正方体ABCDA1B1C1D1中,E、F、G、H分别为AA1、AB、BB1、B1C1的中点,则异面直线EF与GH所成的角等于()图2A.45°B.60°C.90°D.120°【解析】如图,连接A1B、BC1、A1C1,则A1B=BC1=A1C1,且EF∥A1B、GH∥BC1,所以异面直线EF与GH所成的角等于60°.【答案】B6.设l为直线,α,β是两个不同的平面.下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β【解析】选项A,平行于同一条直线的两个平面也可能相交,故选项A错误;选项B,垂直于同一直线的两个平面互相平行,选项B正确;选项C,由条件应得α⊥β,故选项C错误;选项D,l与β的位置不确定,故选项D错误.故选B.【答案】B7.如图3所示,在正方体ABCDA1B1C1D1中,若E是A1C1的中点,则直线CE垂直于()图3A.ACB.BDC.A1DD.A1D1【解析】CE⊂平面ACC1A1,而BD⊥AC,BD⊥AA1,∴BD⊥平面ACC1A1,∴BD⊥CE.【答案】B8.正四棱锥(顶点在底面的射影是底面正方形的中心)的体积为12,底面对角线的长为2,则侧面与底面所成的二面角为()A.30°B.45°C.60°D.90°【解析】由棱锥体积公式可得底面边长为2,高为3,在底面正方形的任一边上,取其中点,连接棱锥的顶点及其在底面的射影,根据二面角定义即可判定其平面角,在直角三角形中,因为tanθ=(设θ为所求平面角),所以二面角为60°,选C.【答案】C9.将正方形ABCD沿BD折成直二面角,M为CD的中点,则∠AMD的大小是()A.45°B.30°C.60°D.90°【解析】如图,设正方形边长为a,作AO⊥BD,则AM===a,又AD=a,DM=,∴AD2=DM2+AM2,∴∠AMD=90°.【答案】D10.在矩形ABCD中,若AB=3,BC=4,PA⊥平面AC,且PA=1,则点P到对角线BD的距离为()A.B.C.D.【解析】如图,过点A作AE⊥BD于点E,连接PE. PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD,∴BD⊥平面PAE,∴BD⊥PE. AE==,PA=1,∴PE==.【答案】B11.已知三棱柱ABCA1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形.若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为()【导学号:09960090】A.75°B.60°C.45°D.30°【解析】如图所示,P为正三角形A1B1C1的中心,设O为△ABC的中心,由题意知:PO⊥平面ABC,连接OA,则∠PAO即为PA与平面ABC所成的角.在正三角形ABC中,AB=BC=AC=,则S=×()2=,VABCA1B1C1=S×PO=,∴PO=.又AO=×=1,∴tan∠PAO==,∴∠PAO=60°.【答案】B12.正方体ABCDA1B1C1D1中,过点A作平面A1BD的垂线,垂足为点H.以下结论中,错误的是()A.点H是△A1BD的垂心B.AH⊥平面CB1D1C.AH的延长线经过点C1D...