第四章三角函数、解三角形4.4函数y=Asin(ωx+φ)的图象及应用理1.y=Asin(ωx+φ)的有关概念y=Asin(ωx+φ)(A>0,ω>0),x∈R振幅周期频率相位初相AT=f==ωx+φφ2.用五点法画y=Asin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示:xωx+φ0π2πy=Asin(ωx+φ)0A0-A03.函数y=sinx的图象经变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象的步骤如下:【知识拓展】1.由y=sinωx到y=sin(ωx+φ)(ω>0,φ>0)的变换:向左平移个单位长度而非φ个单位长度.2.函数y=Asin(ωx+φ)的对称轴由ωx+φ=kπ+,k∈Z确定;对称中心由ωx+φ=kπ,k∈Z确定其横坐标.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)y=sin的图象是由y=sin的图象向右平移个单位得到的.(√)(2)将函数y=sinωx的图象向右平移φ(φ>0)个单位长度,得到函数y=sin(ωx-φ)的图象.(×)(3)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.(×)(4)函数y=Asin(ωx+φ)的最小正周期为T=.(×)(5)把y=sinx的图象上各点纵坐标不变,横坐标缩短为原来的,所得图象对应的函数解析式为y=sinx.(×)(6)若函数y=Acos(ωx+φ)的最小正周期为T,则函数图象的两个相邻对称中心之间的距离为.(√)1.(教材改编)y=2sin(x-)的振幅,频率和初相分别为()A.2,4π,B.2,,C.2,,-D.2,4π,-答案C解析由题意知A=2,f===,初相为-.2.(2015·山东)要得到函数y=sin的图象,只需将函数y=sin4x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位答案B解析 y=sin=sin,∴要得到y=sin的图象,只需将函数y=sin4x的图象向右平移个单位.3.(2016·青岛模拟)将函数y=sinx的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是()A.y=sin(2x-)B.y=sin(2x-)C.y=sin(x-)D.y=sin(x-)答案C解析y=sinxy=sin(x-)―――――→y=sin(x-).4.(2016·临沂模拟)已知函数f(x)=Acos(ωx+θ)的图象如图所示,f()=-,则f(-)=________.答案-解析由题图知,函数f(x)的周期T=2(-)=,所以f(-)=f(-+)=f()=-.5.若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是________.答案解析 函数f(x)=sin(2x+)的图象向右平移φ个单位得到g(x)=sin[2(x-φ)+]=sin(2x+-2φ),又 g(x)是偶函数,∴-2φ=kπ+(k∈Z),∴φ=--(k∈Z).当k=-1时,φ取得最小正值.题型一函数y=Asin(ωx+φ)的图象及变换例1(2015·湖北)某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入了部分数据,如下表:ωx+φ0π2πxAsin(ωx+φ)05-50(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为,求θ的最小值.解(1)根据表中已知数据,解得A=5,ω=2,φ=-.数据补全如下表:ωx+φ0π2πxπAsin(ωx+φ)050-50且函数解析式为f(x)=5sin.(2)由(1)知f(x)=5sin,得g(x)=5sin.因为函数y=sinx图象的对称中心为(kπ,0),k∈Z.令2x+2θ-=kπ,解得x=+-θ,k∈Z.由于函数y=g(x)的图象关于点成中心对称,所以令+-θ=,解得θ=-,k∈Z.由θ>0可知,当k=1时,θ取得最小值.引申探究在本例(2)中,将f(x)图象上所有点向左平移个单位长度,得到g(x)的图象,求g(x)的解析式,并写出g(x)图象的对称中心.解由(1)知f(x)=5sin(2x-),因此g(x)=5sin[2(x+)-]=5sin(2x+).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+=kπ,k∈Z,解得x=-,k∈Z.即y=g(x)图象的对称中心为(-,0),k∈Z.思维升华(1)五点法作简图:用“五点法”作y=Asin(ωx+φ)的简图,主要是通过变量代换,设z=ωx+φ,由z取0,,π,π,2π来求出相应的x,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y=sinx的图象通过变换得到y=Asin...